题目描述

Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).

At each step one of two things will happen:

  • FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,

  • Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.

Farmer John is a very poor counter -- help him answer Bessie's questions!

给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers N and M

  • Lines 2..N: Two space-separated integers describing the endpoints of a road.

  • Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.

输出格式:

  • Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.

输入输出样例

输入样例#1:

4 6
1 4
2 4
3 4
P 2 3
P 1 3
Q 3 4
P 1 4
Q 2 4
Q 1 4
输出样例#1:

2
1
2 思路:
  裸树剖; 来,上代码:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 100005 using namespace std; struct TreeNodeType {
int l,r,dis,mid,flag;
};
struct TreeNodeType tree[maxn<<]; struct EdgeType {
int to,next;
};
struct EdgeType edge[maxn<<]; int if_z,n,m,cnt,deep[maxn],f[maxn],size[maxn];
int top[maxn],id[maxn],head[maxn]; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} void search_1(int now,int fa)
{
int pos=cnt++;
deep[now]=deep[fa]+,f[now]=fa;
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==fa) continue;
search_1(edge[i].to,now);
}
size[now]=cnt-pos;
} void search_2(int now,int chain)
{
int pos=;
top[now]=chain,id[now]=++cnt;
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==f[now]) continue;
if(size[edge[i].to]>size[pos]) pos=edge[i].to;
}
if(pos==) return ;
search_2(pos,chain);
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==f[now]||edge[i].to==pos) continue;
search_2(edge[i].to,edge[i].to);
}
} void tree_build(int now,int l,int r)
{
tree[now].l=l,tree[now].r=r;
if(l==r) return ;
tree[now].mid=(l+r)>>;
tree_build(now<<,l,tree[now].mid);
tree_build(now<<|,tree[now].mid+,r);
} void tree_change(int now,int l,int r)
{
if(tree[now].l==l&&tree[now].r==r)
{
tree[now].dis+=r-l+;
tree[now].flag++;
return ;
}
if(tree[now].flag)
{
tree[now<<].dis+=tree[now].flag*(tree[now].mid-tree[now].l+);
tree[now<<|].dis+=tree[now].flag*(tree[now].r-tree[now].mid);
tree[now<<].flag+=tree[now].flag,tree[now<<|].flag+=tree[now].flag;
tree[now].flag=;
}
if(l>tree[now].mid) tree_change(now<<|,l,r);
else if(r<=tree[now].mid) tree_change(now<<,l,r);
else
{
tree_change(now<<,l,tree[now].mid);
tree_change(now<<|,tree[now].mid+,r);
}
tree[now].dis=tree[now<<].dis+tree[now<<|].dis;
} int tree_query(int now,int l,int r)
{
if(tree[now].l==l&&tree[now].r==r) return tree[now].dis;
if(tree[now].flag)
{
tree[now<<].dis+=tree[now].flag*(tree[now].mid-tree[now].l+);
tree[now<<|].dis+=tree[now].flag*(tree[now].r-tree[now].mid);
tree[now<<].flag+=tree[now].flag,tree[now<<|].flag+=tree[now].flag;
tree[now].flag=;
}
if(l>tree[now].mid) return tree_query(now<<|,l,r);
else if(r<=tree[now].mid) return tree_query(now<<,l,r);
else return tree_query(now<<,l,tree[now].mid)+tree_query(now<<|,tree[now].mid+,r);
} int main()
{
in(n),in(m);int u,v;
for(int i=;i<n;i++)
{
in(u),in(v);
edge[++cnt].to=v,edge[cnt].next=head[u],head[u]=cnt;
edge[++cnt].to=u,edge[cnt].next=head[v],head[v]=cnt;
}
char type;
cnt=,search_1(,);
cnt=,search_2(,);
tree_build(,,n);
while(m--)
{
cin>>type;in(u),in(v);
if(type=='P')
{
while(top[u]!=top[v])
{
if(deep[top[u]]<deep[top[v]]) swap(u,v);
tree_change(,id[top[u]],id[u]);
u=f[top[u]];
}
if(u==v) continue;
if(deep[u]>deep[v]) swap(u,v);
tree_change(,id[u]+,id[v]);
}
else
{
int pos=;
while(top[u]!=top[v])
{
if(deep[top[u]]<deep[top[v]]) swap(u,v);
pos+=tree_query(,id[top[u]],id[u]);
u=f[top[u]];
}
if(u==v)
{
printf("%d\n",pos);
continue;
}
if(deep[u]>deep[v]) swap(u,v);
printf("%d\n",pos+tree_query(,id[u]+,id[v]));
}
}
return ;
}

AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038的更多相关文章

  1. 洛谷P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  2. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  3. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)

    题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...

  4. P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  5. [USACO11DEC]牧草种植Grass Planting

    图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...

  6. 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

    模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...

  7. 树链剖分【p3038】[USACO11DEC]牧草种植Grass Planting

    表示看不太清. 概括题意 树上维护区间修改与区间和查询. 很明显树剖裸题,切掉,细节处错误T了好久 TAT 代码 #include<cstdio> #include<cstdlib& ...

  8. 洛谷P3038 牧草种植Grass Planting

    思路: 首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了). 与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点 ...

  9. AC日记——[USACO15DEC]最大流Max Flow 洛谷 P3128

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

随机推荐

  1. WCF_基础学习

    1.https://www.cnblogs.com/swjian/p/8126202.html 2.https://www.cnblogs.com/dotnet261010/p/7407444.htm ...

  2. java中的jdbc操作

    package demo; import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedSta ...

  3. mysql锁机制(转载)

    锁是计算机协调多个进程或线程并发访问某一资源的机制 .在数据库中,除传统的 计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所 ...

  4. 201621123080《java程序设计》第六周作业总结

    201621123080<java程序设计>第六周作业总结 1. 本周学习总结 2. 书面作业 clone方法 1.1 在test1包中编写Employee类,在test2包中新建一个Te ...

  5. svn提交报错,提示:locked,需要cleanup

    版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址: https://www.cnblogs.com/poterliu/p/9285137.html 在使用SVN提交代码或更新代码时经常会 ...

  6. 【windows】【md5】查看文件的md5值

    certutil -hashfile filename MD5 certutil -hashfile filename SHA1 certutil -hashfile filename SHA256 ...

  7. 【实验吧】编程循环&&求底运算

    要好好学写脚本!!! 循环: 题目介绍 给出一个循环公式,对于一个整数n,当n为奇数时,n=3n+1,当n为偶数时,n=n/2,如此循环下去直到n=1时停止. 现要求对两个整数i = 900.j = ...

  8. hdu-2553 N皇后问题(搜索题)

    在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对于给定的N,求出有多少种合法的放置方法. Inpu ...

  9. Python中的属性访问与描述符

    Python中的属性访问与描述符 请给作者点赞--> 原文链接 在Python中,对于一个对象的属性访问,我们一般采用的是点(.)属性运算符进行操作.例如,有一个类实例对象foo,它有一个nam ...

  10. C语言变量长度在32位和64位处理器上的关系

    C语言变量长度在32位和64位处理器上的关系       理论上来讲 我觉得数据类型的字节数应该是由CPU决定的,但是实际上主要由编译器决定(占多少位由编译器在编译期间说了算).常用数据类型对应字节数 ...