Netty中NioEventLoopGroup的创建源码分析
NioEventLoopGroup的无参构造:
- public NioEventLoopGroup() {
- this(0);
- }
调用了单参的构造:
- public NioEventLoopGroup(int nThreads) {
- this(nThreads, (Executor)null);
- }
继续看到双参构造:
- public NioEventLoopGroup(int nThreads, Executor executor) {
- this(nThreads, executor, SelectorProvider.provider());
- }
在这里是使用JDK中NIO的原生API:SelectorProvider的provider,产生了一个SelectorProvider对象调用,继续调用三参构造。
关于SelectorProvider在我前面的博客中有介绍过:【Java】NIO中Selector的创建源码分析,在Windows下默认创建了WindowsSelectorProvider对象。
继续看三参构造:
- public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory, SelectorProvider selectorProvider) {
- this(nThreads, threadFactory, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
- }
在这里创建了一个单例的DefaultSelectStrategyFactory 对象:
- public final class DefaultSelectStrategyFactory implements SelectStrategyFactory {
- public static final SelectStrategyFactory INSTANCE = new DefaultSelectStrategyFactory();
- private DefaultSelectStrategyFactory() {
- }
- public SelectStrategy newSelectStrategy() {
- return DefaultSelectStrategy.INSTANCE;
- }
- }
DefaultSelectStrategyFactory实现的是SelectStrategyFactory 接口:
- public interface SelectStrategyFactory {
- SelectStrategy newSelectStrategy();
- }
该接口提供一个用来产生Select策略的方法,SelectStrategy接口如下:
- public interface SelectStrategy {
- int SELECT = -1;
- int CONTINUE = -2;
- int calculateStrategy(IntSupplier var1, boolean var2) throws Exception;
- }
根据IntSupplier 和一个boolean值为Select策略提供了一个计算策略的方法。
在Netty中只提供了DefaultSelectStrategy这一种默认实现:
- final class DefaultSelectStrategy implements SelectStrategy {
- static final SelectStrategy INSTANCE = new DefaultSelectStrategy();
- private DefaultSelectStrategy() {
- }
- public int calculateStrategy(IntSupplier selectSupplier, boolean hasTasks) throws Exception {
- return hasTasks ? selectSupplier.get() : -1;
- }
- }
其中IntSupplier :
- public interface IntSupplier {
- int get() throws Exception;
- }
结合上面的来看,最终的选择策略主要是根据IntSupplier的get值来得到的。
再回到构造:
- public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory, SelectorProvider selectorProvider, SelectStrategyFactory selectStrategyFactory) {
- super(nThreads, threadFactory, new Object[]{selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject()});
- }
这里产生了一个拒绝策略:
- public static RejectedExecutionHandler reject() {
- return REJECT;
- }
- private static final RejectedExecutionHandler REJECT = new RejectedExecutionHandler() {
- public void rejected(Runnable task, SingleThreadEventExecutor executor) {
- throw new RejectedExecutionException();
- }
- };
- public interface RejectedExecutionHandler {
- void rejected(Runnable var1, SingleThreadEventExecutor var2);
- }
将selectorProvider、selectStrategyFactory以及这个拒绝策略封装在一个Object数组里,再调用了父类MultithreadEventLoopGroup的构造:
- protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
- super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
- }
在这里对nThreads的大小进行了调整:
- private static final int DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt("io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
SystemPropertyUtil.getInt是根据key值"io.netty.eventLoopThreads",获取系统配置值,在没用设置时使用NettyRuntime.availableProcessors() * 2的值
NettyRuntime的availableProcessors实现如下:
- synchronized int availableProcessors() {
- if (this.availableProcessors == 0) {
- int availableProcessors = SystemPropertyUtil.getInt("io.netty.availableProcessors", Runtime.getRuntime().availableProcessors());
- this.setAvailableProcessors(availableProcessors);
- }
- return this.availableProcessors;
- }
还是一样,根据key值"io.netty.availableProcessors",获取系统配置值,在没用设置时使用Runtime.getRuntime().availableProcessors(),是用来获取处理器的个数。
这样保证了在默认情况下nThreads的大小是总是cpu个数的2倍。
继续回到构造,MultithreadEventLoopGroup继续调用父类MultithreadEventExecutorGroup的构造:
- protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
- this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
- }
在这里又初始化了一个单例的DefaultEventExecutorChooserFactory对象:
- public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory();
DefaultEventExecutorChooserFactory 实现的是EventExecutorChooserFactory接口:
- public interface EventExecutorChooserFactory {
- EventExecutorChooserFactory.EventExecutorChooser newChooser(EventExecutor[] var1);
- public interface EventExecutorChooser {
- EventExecutor next();
- }
- }
DefaultEventExecutorChooserFactory 的具体实现:
- public EventExecutorChooser newChooser(EventExecutor[] executors) {
- return (EventExecutorChooser)(isPowerOfTwo(executors.length) ? new DefaultEventExecutorChooserFactory.PowerOfTwoEventExecutorChooser(executors) : new DefaultEventExecutorChooserFactory.GenericEventExecutorChooser(executors));
- }
- private static boolean isPowerOfTwo(int val) {
- return (val & -val) == val;
- }
isPowerOfTwo是用来检查executors的大小是否是二的整数次方,若是二的整数次方,产生PowerOfTwoEventExecutorChooser,反之产生GenericEventExecutorChooser:
- private static final class GenericEventExecutorChooser implements EventExecutorChooser {
- private final AtomicInteger idx = new AtomicInteger();
- private final EventExecutor[] executors;
- GenericEventExecutorChooser(EventExecutor[] executors) {
- this.executors = executors;
- }
- public EventExecutor next() {
- return this.executors[Math.abs(this.idx.getAndIncrement() % this.executors.length)];
- }
- }
- private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
- private final AtomicInteger idx = new AtomicInteger();
- private final EventExecutor[] executors;
- PowerOfTwoEventExecutorChooser(EventExecutor[] executors) {
- this.executors = executors;
- }
- public EventExecutor next() {
- return this.executors[this.idx.getAndIncrement() & this.executors.length - 1];
- }
- }
这两种其实都是用了取模运算,只不过因为二的整数次方的特殊性而使用位运算。
回到构造,MultithreadEventExecutorGroup继续调用本省的构造:
- private final EventExecutor[] children;
- private final Set<EventExecutor> readonlyChildren;
- private final AtomicInteger terminatedChildren;
- private final Promise<?> terminationFuture;
- private final EventExecutorChooser chooser;
- protected MultithreadEventExecutorGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory, Object... args) {
- this.terminatedChildren = new AtomicInteger();
- this.terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
- if (nThreads <= 0) {
- throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
- } else {
- if (executor == null) {
- executor = new ThreadPerTaskExecutor(this.newDefaultThreadFactory());
- }
- this.children = new EventExecutor[nThreads];
- int j;
- for(int i = 0; i < nThreads; ++i) {
- boolean success = false;
- boolean var18 = false;
- try {
- var18 = true;
- this.children[i] = this.newChild((Executor)executor, args);
- success = true;
- var18 = false;
- } catch (Exception var19) {
- throw new IllegalStateException("failed to create a child event loop", var19);
- } finally {
- if (var18) {
- if (!success) {
- int j;
- for(j = 0; j < i; ++j) {
- this.children[j].shutdownGracefully();
- }
- for(j = 0; j < i; ++j) {
- EventExecutor e = this.children[j];
- try {
- while(!e.isTerminated()) {
- e.awaitTermination(2147483647L, TimeUnit.SECONDS);
- }
- } catch (InterruptedException var20) {
- Thread.currentThread().interrupt();
- break;
- }
- }
- }
- }
- }
- if (!success) {
- for(j = 0; j < i; ++j) {
- this.children[j].shutdownGracefully();
- }
- for(j = 0; j < i; ++j) {
- EventExecutor e = this.children[j];
- try {
- while(!e.isTerminated()) {
- e.awaitTermination(2147483647L, TimeUnit.SECONDS);
- }
- } catch (InterruptedException var22) {
- Thread.currentThread().interrupt();
- break;
- }
- }
- }
- }
- this.chooser = chooserFactory.newChooser(this.children);
- FutureListener<Object> terminationListener = new FutureListener<Object>() {
- public void operationComplete(Future<Object> future) throws Exception {
- if (MultithreadEventExecutorGroup.this.terminatedChildren.incrementAndGet() == MultithreadEventExecutorGroup.this.children.length) {
- MultithreadEventExecutorGroup.this.terminationFuture.setSuccess((Object)null);
- }
- }
- };
- EventExecutor[] var24 = this.children;
- j = var24.length;
- for(int var26 = 0; var26 < j; ++var26) {
- EventExecutor e = var24[var26];
- e.terminationFuture().addListener(terminationListener);
- }
- Set<EventExecutor> childrenSet = new LinkedHashSet(this.children.length);
- Collections.addAll(childrenSet, this.children);
- this.readonlyChildren = Collections.unmodifiableSet(childrenSet);
- }
- }
首先是对terminatedChildren的初始化,没什么好说的,对terminationFuture的初始化使用DefaultPromise,用来异步处理终止事件。executor初始化产生一个线程池。
接下来就是对children的操作,根据nThreads的大小,产生一个EventExecutor数组,然后遍历这个数组,调用newChild给每一个元素初始化。
newChild是在NioEventLoopGroup中实现的:
- protected EventLoop newChild(Executor executor, Object... args) throws Exception {
- return new NioEventLoop(this, executor, (SelectorProvider)args[0], ((SelectStrategyFactory)args[1]).newSelectStrategy(), (RejectedExecutionHandler)args[2]);
- }
在这里直接使用executor,和之前放在args数组中的SelectorProvider、SelectStrategyFactory(newSelectStrategy方法产生DefaultSelectStrategy)和RejectedExecutionHandler产生了一个NioEventLoop对象:
- private Selector selector;
- private Selector unwrappedSelector;
- private SelectedSelectionKeySet selectedKeys;
- private final SelectorProvider provider;
- private final AtomicBoolean wakenUp = new AtomicBoolean();
- private final SelectStrategy selectStrategy;
- NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider, SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
- super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
- if (selectorProvider == null) {
- throw new NullPointerException("selectorProvider");
- } else if (strategy == null) {
- throw new NullPointerException("selectStrategy");
- } else {
- this.provider = selectorProvider;
- NioEventLoop.SelectorTuple selectorTuple = this.openSelector();
- this.selector = selectorTuple.selector;
- this.unwrappedSelector = selectorTuple.unwrappedSelector;
- this.selectStrategy = strategy;
- }
- }
NioEventLoop首先在继承链上调用父类的构造,都是一些成员的赋值操作,简单看一看:
- protected SingleThreadEventLoop(EventLoopGroup parent, Executor executor, boolean addTaskWakesUp, int maxPendingTasks, RejectedExecutionHandler rejectedExecutionHandler) {
- super(parent, executor, addTaskWakesUp, maxPendingTasks, rejectedExecutionHandler);
- this.tailTasks = this.newTaskQueue(maxPendingTasks);
- }
- protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor, boolean addTaskWakesUp, int maxPendingTasks, RejectedExecutionHandler rejectedHandler) {
- super(parent);
- this.threadLock = new Semaphore(0);
- this.shutdownHooks = new LinkedHashSet();
- this.state = 1;
- this.terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
- this.addTaskWakesUp = addTaskWakesUp;
- this.maxPendingTasks = Math.max(16, maxPendingTasks);
- this.executor = (Executor)ObjectUtil.checkNotNull(executor, "executor");
- this.taskQueue = this.newTaskQueue(this.maxPendingTasks);
- this.rejectedExecutionHandler = (RejectedExecutionHandler)ObjectUtil.checkNotNull(rejectedHandler, "rejectedHandler");
- }
- protected AbstractScheduledEventExecutor(EventExecutorGroup parent) {
- super(parent);
- }
- protected AbstractEventExecutor(EventExecutorGroup parent) {
- this.selfCollection = Collections.singleton(this);
- this.parent = parent;
- }
在经过这继承链上的一系列调用后,给provider成员赋值selectorProvider,就是之前创建好的WindowsSelectorProvider,然后使用openSelector方法,最终创建JDK原生的Selector:
- private NioEventLoop.SelectorTuple openSelector() {
- final AbstractSelector unwrappedSelector;
- try {
- unwrappedSelector = this.provider.openSelector();
- } catch (IOException var7) {
- throw new ChannelException("failed to open a new selector", var7);
- }
- if (DISABLE_KEYSET_OPTIMIZATION) {
- return new NioEventLoop.SelectorTuple(unwrappedSelector);
- } else {
- final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();
- Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction<Object>() {
- public Object run() {
- try {
- return Class.forName("sun.nio.ch.SelectorImpl", false, PlatformDependent.getSystemClassLoader());
- } catch (Throwable var2) {
- return var2;
- }
- }
- });
- if (maybeSelectorImplClass instanceof Class && ((Class)maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) {
- final Class<?> selectorImplClass = (Class)maybeSelectorImplClass;
- Object maybeException = AccessController.doPrivileged(new PrivilegedAction<Object>() {
- public Object run() {
- try {
- Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
- Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");
- Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true);
- if (cause != null) {
- return cause;
- } else {
- cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true);
- if (cause != null) {
- return cause;
- } else {
- selectedKeysField.set(unwrappedSelector, selectedKeySet);
- publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
- return null;
- }
- }
- } catch (NoSuchFieldException var4) {
- return var4;
- } catch (IllegalAccessException var5) {
- return var5;
- }
- }
- });
- if (maybeException instanceof Exception) {
- this.selectedKeys = null;
- Exception e = (Exception)maybeException;
- logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);
- return new NioEventLoop.SelectorTuple(unwrappedSelector);
- } else {
- this.selectedKeys = selectedKeySet;
- logger.trace("instrumented a special java.util.Set into: {}", unwrappedSelector);
- return new NioEventLoop.SelectorTuple(unwrappedSelector, new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet));
- }
- } else {
- if (maybeSelectorImplClass instanceof Throwable) {
- Throwable t = (Throwable)maybeSelectorImplClass;
- logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t);
- }
- return new NioEventLoop.SelectorTuple(unwrappedSelector);
- }
- }
- }
可以看到在一开始就使用provider的openSelector方法,即WindowsSelectorProvider的openSelector方法,创建了WindowsSelectorImpl对象(【Java】NIO中Selector的创建源码分析 )
然后根据DISABLE_KEYSET_OPTIMIZATION判断:
- private static final boolean DISABLE_KEYSET_OPTIMIZATION = SystemPropertyUtil.getBoolean("io.netty.noKeySetOptimization", false);
可以看到这个系统配置在没有设置默认是false,如果设置了则直接创建一个SelectorTuple对象返回:
- private static final class SelectorTuple {
- final Selector unwrappedSelector;
- final Selector selector;
- SelectorTuple(Selector unwrappedSelector) {
- this.unwrappedSelector = unwrappedSelector;
- this.selector = unwrappedSelector;
- }
- SelectorTuple(Selector unwrappedSelector, Selector selector) {
- this.unwrappedSelector = unwrappedSelector;
- this.selector = selector;
- }
- }
可以看到仅仅是将unwrappedSelector和selector封装了,unwrappedSelector对应的是JDK原生Selector没有经过更改的,而selector对应的是经过更改修饰操作的。
在没有系统配置下,就对Selector进行更改修饰操作:
首先创建SelectedSelectionKeySet对象,这个SelectedSelectionKeySet继承自AbstractSet:
- final class SelectedSelectionKeySet extends AbstractSet<SelectionKey> {
- SelectionKey[] keys = new SelectionKey[1024];
- int size;
- SelectedSelectionKeySet() {
- }
- ......
- }
后面是通过反射机制,使得WindowsSelectorImpl的selectedKeys和publicSelectedKeys成员直接赋值为SelectedSelectionKeySet对象。
WindowsSelectorImpl的这两个成员是在SelectorImpl中定义的:
- protected Set<SelectionKey> selectedKeys = new HashSet();
- private Set<SelectionKey> publicSelectedKeys;
从这里就可以明白,在JDK原生的Selector中,selectedKeys和publicSelectedKeys这两个Set的初始化大小都为0,而在这里仅仅就是使其初始化大小变为1024。
后面就是对一些异常的处理,没什么好说的。
openSelector结束后,就可以分别对包装过的Selector和未包装过的Selector,即selector和unwrappedSelector成员赋值,再由selectStrategy保存刚才产生的选择策略,用于Selector的轮询。
回到MultithreadEventExecutorGroup的构造,在调用newChild方法时即NioEventLoop创建的过程中可能出现异常情况,就需要遍历children数组,将之前创建好的NioEventLoop使用shutdownGracefully优雅地关闭掉:
shutdownGracefully在AbstractEventExecutor中实现:
- public Future<?> shutdownGracefully() {
- return this.shutdownGracefully(2L, 15L, TimeUnit.SECONDS);
- }
这里设置了超时时间,继续调用SingleThreadEventExecutor的shutdownGracefully方法:
- public Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit) {
- if (quietPeriod < 0L) {
- throw new IllegalArgumentException("quietPeriod: " + quietPeriod + " (expected >= 0)");
- } else if (timeout < quietPeriod) {
- throw new IllegalArgumentException("timeout: " + timeout + " (expected >= quietPeriod (" + quietPeriod + "))");
- } else if (unit == null) {
- throw new NullPointerException("unit");
- } else if (this.isShuttingDown()) {
- return this.terminationFuture();
- } else {
- boolean inEventLoop = this.inEventLoop();
- while(!this.isShuttingDown()) {
- boolean wakeup = true;
- int oldState = this.state;
- int newState;
- if (inEventLoop) {
- newState = 3;
- } else {
- switch(oldState) {
- case 1:
- case 2:
- newState = 3;
- break;
- default:
- newState = oldState;
- wakeup = false;
- }
- }
- if (STATE_UPDATER.compareAndSet(this, oldState, newState)) {
- this.gracefulShutdownQuietPeriod = unit.toNanos(quietPeriod);
- this.gracefulShutdownTimeout = unit.toNanos(timeout);
- if (oldState == 1) {
- try {
- this.doStartThread();
- } catch (Throwable var10) {
- STATE_UPDATER.set(this, 5);
- this.terminationFuture.tryFailure(var10);
- if (!(var10 instanceof Exception)) {
- PlatformDependent.throwException(var10);
- }
- return this.terminationFuture;
- }
- }
- if (wakeup) {
- this.wakeup(inEventLoop);
- }
- return this.terminationFuture();
- }
- }
- return this.terminationFuture();
- }
- }
前三个判断没什么好说的,isShuttingDown判断:
- public boolean isShuttingDown() {
- return this.state >= 3;
- }
在之前NioEventLoop创建的时候,调用了一系列的继承链,其中state是在SingleThreadEventExecutor的构造方法中实现的,初始值是1,state有如下几种状态:
- private static final int ST_NOT_STARTED = 1;
- private static final int ST_STARTED = 2;
- private static final int ST_SHUTTING_DOWN = 3;
- private static final int ST_SHUTDOWN = 4;
- private static final int ST_TERMINATED = 5;
可见在NioEventLoop初始化后处于尚未启动状态,并没有Channel的注册,也就不需要轮询。
isShuttingDown就必然是false,就进入了else块:
首先得到inEventLoop的返回值,该方法在AbstractEventExecutor中实现:
- public boolean inEventLoop() {
- return this.inEventLoop(Thread.currentThread());
- }
他传入了一个当前线程,接着调用inEventLoop的重载,这个方法是在SingleThreadEventExecutor中实现:
- public boolean inEventLoop(Thread thread) {
- return thread == this.thread;
- }
通过观察之前的SingleThreadEventExecutor构造方法,发现并没有对thread成员初始化,此时的this.thread就是null,那么返回值就是false,即inEventLoop为false。
在while循环中又对isShuttingDown进行了判断,shutdownGracefully当让不仅仅使用在创建NioEventLoop对象失败时才调用的,无论是在EventLoopGroup的关闭,还是Bootstrap的关闭,都会关闭绑定的NioEventLoop,所以在多线程环境中,有可能会被其他线程关闭。
在while循环中,结合上面可知满足进入switch块,在switch块中令newState为3;
然后调用STATE_UPDATER的compareAndSet方法,STATE_UPDATER是用来原子化更新state成员的:
- private static final AtomicIntegerFieldUpdater<SingleThreadEventExecutor> STATE_UPDATER = AtomicIntegerFieldUpdater.newUpdater(SingleThreadEventExecutor.class, "state");
所以这里就是使用CAS操作,原子化更新state成员为3,也就是使当前状态由ST_NOT_STARTED 变为了ST_SHUTTING_DOWN 状态。
gracefulShutdownQuietPeriod和gracefulShutdownTimeout分别保存quietPeriod和timeout的纳秒级颗粒度。
前面可知oldState使1,调用doStartThread方法:
- private void doStartThread() {
- assert this.thread == null;
- this.executor.execute(new Runnable() {
- public void run() {
- SingleThreadEventExecutor.this.thread = Thread.currentThread();
- if (SingleThreadEventExecutor.this.interrupted) {
- SingleThreadEventExecutor.this.thread.interrupt();
- }
- boolean success = false;
- SingleThreadEventExecutor.this.updateLastExecutionTime();
- boolean var112 = false;
- int oldState;
- label1685: {
- try {
- var112 = true;
- SingleThreadEventExecutor.this.run();
- success = true;
- var112 = false;
- break label1685;
- } catch (Throwable var119) {
- SingleThreadEventExecutor.logger.warn("Unexpected exception from an event executor: ", var119);
- var112 = false;
- } finally {
- if (var112) {
- int oldStatex;
- do {
- oldStatex = SingleThreadEventExecutor.this.state;
- } while(oldStatex < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldStatex, 3));
- if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L) {
- SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
- }
- try {
- while(!SingleThreadEventExecutor.this.confirmShutdown()) {
- ;
- }
- } finally {
- try {
- SingleThreadEventExecutor.this.cleanup();
- } finally {
- SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
- SingleThreadEventExecutor.this.threadLock.release();
- if (!SingleThreadEventExecutor.this.taskQueue.isEmpty()) {
- SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
- }
- SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
- }
- }
- }
- }
- do {
- oldState = SingleThreadEventExecutor.this.state;
- } while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3));
- if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L) {
- SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
- }
- try {
- while(!SingleThreadEventExecutor.this.confirmShutdown()) {
- ;
- }
- return;
- } finally {
- try {
- SingleThreadEventExecutor.this.cleanup();
- } finally {
- SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
- SingleThreadEventExecutor.this.threadLock.release();
- if (!SingleThreadEventExecutor.this.taskQueue.isEmpty()) {
- SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
- }
- SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
- }
- }
- }
- do {
- oldState = SingleThreadEventExecutor.this.state;
- } while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3));
- if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L) {
- SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
- }
- try {
- while(!SingleThreadEventExecutor.this.confirmShutdown()) {
- ;
- }
- } finally {
- try {
- SingleThreadEventExecutor.this.cleanup();
- } finally {
- SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
- SingleThreadEventExecutor.this.threadLock.release();
- if (!SingleThreadEventExecutor.this.taskQueue.isEmpty()) {
- SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
- }
- SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
- }
- }
- }
- });
- }
刚才说过this.thread并没有初始化,所以等于null成立,断言可以继续。
然后直接使executor运行了一个线程,这个executor其实就是在刚才的MultithreadEventExecutorGroup中产生的ThreadPerTaskExecutor对象。
在线程中,首先将SingleThreadEventExecutor的thread成员初始化为当前线程。
在这里可能就有疑问了,为什么会在关闭时会调用名为doStartThread的方法,这个方法不因该在启动时调用吗?
其实doStartThread在启动时是会被调用的,当在启动时被调用的话,每一个NioEventLoop都会被绑定一个线程用来处理真正的Selector操作,根据之前的说法就可以知道,每个EventLoopGroup在创建后都会被绑定cpu个数的二倍个NioEventLoop,而每个NioEventLoop都会绑定一个Selector对象,上面又说了在启动时SingleThreadEventExecutor绑定了一个线程,即NioEventLoop绑定了一个线程来处理其绑定的Selector的轮询。
至于关闭时还会启动Selector的轮询,就是为了解决注册了的Channel没有被处理的情况。
回到doStartThread方法,其实这个doStartThread方法的核心是SingleThreadEventExecutor.this.run(),这个方法就是正真的Selector的轮询操作,在NioEventLoop中实现:
- protected void run() {
- while(true) {
- while(true) {
- try {
- switch(this.selectStrategy.calculateStrategy(this.selectNowSupplier, this.hasTasks())) {
- case -2:
- continue;
- case -1:
- this.select(this.wakenUp.getAndSet(false));
- if (this.wakenUp.get()) {
- this.selector.wakeup();
- }
- default:
- this.cancelledKeys = 0;
- this.needsToSelectAgain = false;
- int ioRatio = this.ioRatio;
- if (ioRatio == 100) {
- try {
- this.processSelectedKeys();
- } finally {
- this.runAllTasks();
- }
- } else {
- long ioStartTime = System.nanoTime();
- boolean var13 = false;
- try {
- var13 = true;
- this.processSelectedKeys();
- var13 = false;
- } finally {
- if (var13) {
- long ioTime = System.nanoTime() - ioStartTime;
- this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
- }
- }
- long ioTime = System.nanoTime() - ioStartTime;
- this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
- }
- }
- } catch (Throwable var21) {
- handleLoopException(var21);
- }
- try {
- if (this.isShuttingDown()) {
- this.closeAll();
- if (this.confirmShutdown()) {
- return;
- }
- }
- } catch (Throwable var18) {
- handleLoopException(var18);
- }
- }
- }
- }
进入switch块,首先调用之前准备好的选择策略,其中this.selectNowSupplier在NioEventLoop创建的时候就被创建了:
- private final IntSupplier selectNowSupplier = new IntSupplier() {
- public int get() throws Exception {
- return NioEventLoop.this.selectNow();
- }
- };
实际上调用了selectNow方法:
- int selectNow() throws IOException {
- int var1;
- try {
- var1 = this.selector.selectNow();
- } finally {
- if (this.wakenUp.get()) {
- this.selector.wakeup();
- }
- }
- return var1;
- }
这里就直接调用了JDK原生的selectNow方法。
之前说过的选择策略:
- public int calculateStrategy(IntSupplier selectSupplier, boolean hasTasks) throws Exception {
- return hasTasks ? selectSupplier.get() : -1;
- }
其中hasTasks是根据hasTasks方法来判断,而hasTasks方法就是判断任务队列是否为空,那么在一开始初始化,必然是空的,所以这里calculateStrategy的返回值就是-1;
那么case为-1条件成立,执行this.select(this.wakenUp.getAndSet(false)),其中wakenUp是一个原子化的Boolean,用来表示是需要唤醒Selector的轮询阻塞,初始化是为true,这里通过CAS操作设置为false代表不需要唤醒,后面在select执行完后,又判断wakenUp是否需要唤醒,说明在select中对Selector的阻塞进行了检查,若是需要唤醒,就通过Selector的原生API完成唤醒【Java】NIO中Selector的select方法源码分析
来看看这里的select实现:
- private void select(boolean oldWakenUp) throws IOException {
- Selector selector = this.selector;
- try {
- int selectCnt = 0;
- long currentTimeNanos = System.nanoTime();
- long selectDeadLineNanos = currentTimeNanos + this.delayNanos(currentTimeNanos);
- while(true) {
- long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
- if (timeoutMillis <= 0L) {
- if (selectCnt == 0) {
- selector.selectNow();
- selectCnt = 1;
- }
- break;
- }
- if (this.hasTasks() && this.wakenUp.compareAndSet(false, true)) {
- selector.selectNow();
- selectCnt = 1;
- break;
- }
- int selectedKeys = selector.select(timeoutMillis);
- ++selectCnt;
- if (selectedKeys != 0 || oldWakenUp || this.wakenUp.get() || this.hasTasks() || this.hasScheduledTasks()) {
- break;
- }
- if (Thread.interrupted()) {
- if (logger.isDebugEnabled()) {
- logger.debug("Selector.select() returned prematurely because Thread.currentThread().interrupt() was called. Use NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
- }
- selectCnt = 1;
- break;
- }
- long time = System.nanoTime();
- if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
- selectCnt = 1;
- } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 && selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
- logger.warn("Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.", selectCnt, selector);
- this.rebuildSelector();
- selector = this.selector;
- selector.selectNow();
- selectCnt = 1;
- break;
- }
- currentTimeNanos = time;
- }
- if (selectCnt > 3 && logger.isDebugEnabled()) {
- logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.", selectCnt - 1, selector);
- }
- } catch (CancelledKeyException var13) {
- if (logger.isDebugEnabled()) {
- logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?", selector, var13);
- }
- }
- }
这个方法虽然看着很长,但核心就是判断这个存放任务的阻塞队列是否还有任务,若是有,就直接调用Selector的selectNow方法获取就绪的文件描述符,若是没有就绪的文件描述符该方法也会立即返回;若是阻塞队列中没有任务,就调用Selector的select(timeout)方法,尝试在超时时间内取获取就绪的文件描述符。
因为现在是在执行NioEventLoopGroup的创建,并没有Channel的注册,也就没有轮询到任何文件描述符就绪。
在轮询结束后,回到run方法,进入default块:
其中ioRatio是执行IO操作和执行任务队列的任务用时比率,默认是50。若是ioRatio设置为100,就必须等到tasks阻塞队列中的所有任务执行完毕才再次进行轮询;若是小于100,那么就根据(100 - ioRatio) / ioRatio的比值乘以ioTime计算出的超时时间让所有任务尝试在超时时间内执行完毕,若是到达超时时间还没执行完毕,就在下一轮的轮询中执行。
processSelectedKeys方法就是获取Selector轮询的SelectedKeys结果:
- private void processSelectedKeys() {
- if (this.selectedKeys != null) {
- this.processSelectedKeysOptimized();
- } else {
- this.processSelectedKeysPlain(this.selector.selectedKeys());
- }
- }
selectedKeys 在openSelector时被初始化过了,若是在openSelector中出现异常selectedKeys才会为null。
processSelectedKeysOptimized方法:
- private void processSelectedKeysOptimized() {
- for(int i = 0; i < this.selectedKeys.size; ++i) {
- SelectionKey k = this.selectedKeys.keys[i];
- this.selectedKeys.keys[i] = null;
- Object a = k.attachment();
- if (a instanceof AbstractNioChannel) {
- this.processSelectedKey(k, (AbstractNioChannel)a);
- } else {
- NioTask<SelectableChannel> task = (NioTask)a;
- processSelectedKey(k, task);
- }
- if (this.needsToSelectAgain) {
- this.selectedKeys.reset(i + 1);
- this.selectAgain();
- i = -1;
- }
- }
- }
这里就通过遍历在openSelector中注入进Selector的SelectedKeys,得到SelectionKey 对象。
在这里可以看到Netty很巧妙地通过SelectionKey的attachment附件,将JDK中的Channel和Netty中的Channel联系了起来。
根据得到的附件Channel的类型,执行不同的processSelectedKey方法,去处理IO操作。
processSelectedKey(SelectionKey k, AbstractNioChannel ch)方法:
- private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
- NioUnsafe unsafe = ch.unsafe();
- if (!k.isValid()) {
- NioEventLoop eventLoop;
- try {
- eventLoop = ch.eventLoop();
- } catch (Throwable var6) {
- return;
- }
- if (eventLoop == this && eventLoop != null) {
- unsafe.close(unsafe.voidPromise());
- }
- } else {
- try {
- int readyOps = k.readyOps();
- if ((readyOps & 8) != 0) {
- int ops = k.interestOps();
- ops &= -9;
- k.interestOps(ops);
- unsafe.finishConnect();
- }
- if ((readyOps & 4) != 0) {
- ch.unsafe().forceFlush();
- }
- if ((readyOps & 17) != 0 || readyOps == 0) {
- unsafe.read();
- }
- } catch (CancelledKeyException var7) {
- unsafe.close(unsafe.voidPromise());
- }
- }
- }
这里的主要核心就是根据SelectedKey的readyOps值来判断,处理不同的就绪事件,有如下几种事件:
- public static final int OP_READ = 1 << 0;
- public static final int OP_WRITE = 1 << 2;
- public static final int OP_CONNECT = 1 << 3;
- public static final int OP_ACCEPT = 1 << 4;
结合来看上面的判断就对应:连接就绪、写就绪、侦听或者读就绪(或者缺省状态0,该状态是未来注册时的默认状态,后续博客会介绍),交由Netty的AbstractNioChannel的NioUnsafe去处理不同事件的byte数据,NioUnsafe会将数据再交由ChannelPipeline双向链表去处理。
关于ChannelPipeline会在后续的博客中详细介绍。
processSelectedKey(SelectionKey k, NioTask<SelectableChannel> task)这个方法的实现细节需要由使用者实现NioTask<SelectableChannel>接口,就不说了。
回到processSelectedKeys方法,在this.selectedKeys等于null的情况下:
- private void processSelectedKeysPlain(Set<SelectionKey> selectedKeys) {
- if (!selectedKeys.isEmpty()) {
- Iterator i = selectedKeys.iterator();
- while(true) {
- SelectionKey k = (SelectionKey)i.next();
- Object a = k.attachment();
- i.remove();
- if (a instanceof AbstractNioChannel) {
- this.processSelectedKey(k, (AbstractNioChannel)a);
- } else {
- NioTask<SelectableChannel> task = (NioTask)a;
- processSelectedKey(k, task);
- }
- if (!i.hasNext()) {
- break;
- }
- if (this.needsToSelectAgain) {
- this.selectAgain();
- selectedKeys = this.selector.selectedKeys();
- if (selectedKeys.isEmpty()) {
- break;
- }
- i = selectedKeys.iterator();
- }
- }
- }
- }
这是在openSelector中注入进Selector的SelectedKeys失败的情况下,直接遍历Selector本身的SelectedKeys,和processSelectedKeysOptimized没有差别。
继续回到run方法,在调用完processSelectedKeys方法后,就需要调用runAllTasks处理任务队列中的任务:
runAllTasks()方法:
- protected boolean runAllTasks() {
- assert this.inEventLoop();
- boolean ranAtLeastOne = false;
- boolean fetchedAll;
- do {
- fetchedAll = this.fetchFromScheduledTaskQueue();
- if (this.runAllTasksFrom(this.taskQueue)) {
- ranAtLeastOne = true;
- }
- } while(!fetchedAll);
- if (ranAtLeastOne) {
- this.lastExecutionTime = ScheduledFutureTask.nanoTime();
- }
- this.afterRunningAllTasks();
- return ranAtLeastOne;
- }
首先调用fetchFromScheduledTaskQueue方法:
- private boolean fetchFromScheduledTaskQueue() {
- long nanoTime = AbstractScheduledEventExecutor.nanoTime();
- for(Runnable scheduledTask = this.pollScheduledTask(nanoTime); scheduledTask != null; scheduledTask = this.pollScheduledTask(nanoTime)) {
- if (!this.taskQueue.offer(scheduledTask)) {
- this.scheduledTaskQueue().add((ScheduledFutureTask)scheduledTask);
- return false;
- }
- }
- return true;
- }
这里就是通过pollScheduledTask不断地从延时任务队列获取到期的任务,将到期的任务添加到taskQueue任务队列中,为上面的runAllTasksFrom执行做准备;若是添加失败,再把它放进延时任务队列。
pollScheduledTask方法:
- protected final Runnable pollScheduledTask(long nanoTime) {
- assert this.inEventLoop();
- Queue<ScheduledFutureTask<?>> scheduledTaskQueue = this.scheduledTaskQueue;
- ScheduledFutureTask<?> scheduledTask = scheduledTaskQueue == null ? null : (ScheduledFutureTask)scheduledTaskQueue.peek();
- if (scheduledTask == null) {
- return null;
- } else if (scheduledTask.deadlineNanos() <= nanoTime) {
- scheduledTaskQueue.remove();
- return scheduledTask;
- } else {
- return null;
- }
- }
从延时任务队列中获取队首的任务scheduledTask,若是scheduledTask的deadlineNanos小于等于nanoTime,说明该任务到期。
回到runAllTasks,将到期了的延时任务放在了任务队列,由runAllTasksFrom执行这些任务:
- protected final boolean runAllTasksFrom(Queue<Runnable> taskQueue) {
- Runnable task = pollTaskFrom(taskQueue);
- if (task == null) {
- return false;
- } else {
- do {
- safeExecute(task);
- task = pollTaskFrom(taskQueue);
- } while(task != null);
- return true;
- }
- }
不断地从任务队列队首获取任务,然后执行,直到没有任务。
pollTaskFrom是获取队首任务:
- protected static Runnable pollTaskFrom(Queue<Runnable> taskQueue) {
- Runnable task;
- do {
- task = (Runnable)taskQueue.poll();
- } while(task == WAKEUP_TASK);
- return task;
- }
其中WAKEUP_TASK,是用来巧妙地控制循环:
- private static final Runnable WAKEUP_TASK = new Runnable() {
- public void run() {
- }
- };
safeExecute是执行任务:
- protected static void safeExecute(Runnable task) {
- try {
- task.run();
- } catch (Throwable var2) {
- logger.warn("A task raised an exception. Task: {}", task, var2);
- }
- }
实际上就是执行Runnable 的run方法。
继续回到runAllTasks方法,当所有到期任务执行完毕后,根据ranAtLeastOne判断是否需要修改最后一次执行时间lastExecutionTime,最后调用afterRunningAllTasks方法,该方法是在SingleThreadEventLoop中实现的:
- protected void afterRunningAllTasks() {
- this.runAllTasksFrom(this.tailTasks);
- }
这里就仅仅执行了tailTasks队列中的任务。runAllTasks到这里执行完毕。
再来看看runAllTasks(timeoutNanos)方法:
- protected boolean runAllTasks(long timeoutNanos) {
- this.fetchFromScheduledTaskQueue();
- Runnable task = this.pollTask();
- if (task == null) {
- this.afterRunningAllTasks();
- return false;
- } else {
- long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
- long runTasks = 0L;
- long lastExecutionTime;
- while(true) {
- safeExecute(task);
- ++runTasks;
- if ((runTasks & 63L) == 0L) {
- lastExecutionTime = ScheduledFutureTask.nanoTime();
- if (lastExecutionTime >= deadline) {
- break;
- }
- }
- task = this.pollTask();
- if (task == null) {
- lastExecutionTime = ScheduledFutureTask.nanoTime();
- break;
- }
- }
- this.afterRunningAllTasks();
- this.lastExecutionTime = lastExecutionTime;
- return true;
- }
- }
这个方法前面的runAllTasks方法类似,先通过fetchFromScheduledTaskQueue将所有到期了的延时任务放在taskQueue中,然后不断从taskQueue队首获取任务,但是,若是执行到了到超过了63个任务,判断是否达到了超时时间deadline,若是达到结束循环,留着下次执行,反之继续循环执行任务。
回到run方法,在轮询完毕,并且执行完任务后,通过isShuttingDown判断当前状态,在之前的CAS操作中,state已经变为了3,所以isShuttingDown成立,就需要调用closeAll方法
- private void closeAll() {
- this.selectAgain();
- Set<SelectionKey> keys = this.selector.keys();
- Collection<AbstractNioChannel> channels = new ArrayList(keys.size());
- Iterator var3 = keys.iterator();
- while(var3.hasNext()) {
- SelectionKey k = (SelectionKey)var3.next();
- Object a = k.attachment();
- if (a instanceof AbstractNioChannel) {
- channels.add((AbstractNioChannel)a);
- } else {
- k.cancel();
- NioTask<SelectableChannel> task = (NioTask)a;
- invokeChannelUnregistered(task, k, (Throwable)null);
- }
- }
- var3 = channels.iterator();
- while(var3.hasNext()) {
- AbstractNioChannel ch = (AbstractNioChannel)var3.next();
- ch.unsafe().close(ch.unsafe().voidPromise());
- }
- }
在这里首先调用selectAgain进行一次轮询:
- private void selectAgain() {
- this.needsToSelectAgain = false;
- try {
- this.selector.selectNow();
- } catch (Throwable var2) {
- logger.warn("Failed to update SelectionKeys.", var2);
- }
- }
通过这次的轮询,将当前仍有事件就绪的JDK的SelectionKey中绑定的Netty的Channel添加到channels集合中,遍历这个集合,通过unsafe的close方法关闭Netty的Channel。
之后调用confirmShutdown方法:
- protected boolean confirmShutdown() {
- if (!this.isShuttingDown()) {
- return false;
- } else if (!this.inEventLoop()) {
- throw new IllegalStateException("must be invoked from an event loop");
- } else {
- this.cancelScheduledTasks();
- if (this.gracefulShutdownStartTime == 0L) {
- this.gracefulShutdownStartTime = ScheduledFutureTask.nanoTime();
- }
- if (!this.runAllTasks() && !this.runShutdownHooks()) {
- long nanoTime = ScheduledFutureTask.nanoTime();
- if (!this.isShutdown() && nanoTime - this.gracefulShutdownStartTime <= this.gracefulShutdownTimeout) {
- if (nanoTime - this.lastExecutionTime <= this.gracefulShutdownQuietPeriod) {
- this.wakeup(true);
- try {
- Thread.sleep(100L);
- } catch (InterruptedException var4) {
- ;
- }
- return false;
- } else {
- return true;
- }
- } else {
- return true;
- }
- } else if (this.isShutdown()) {
- return true;
- } else if (this.gracefulShutdownQuietPeriod == 0L) {
- return true;
- } else {
- this.wakeup(true);
- return false;
- }
- }
- }
首先调用cancelScheduledTasks,取消所有的延时任务:
- protected void cancelScheduledTasks() {
- assert this.inEventLoop();
- PriorityQueue<ScheduledFutureTask<?>> scheduledTaskQueue = this.scheduledTaskQueue;
- if (!isNullOrEmpty(scheduledTaskQueue)) {
- ScheduledFutureTask<?>[] scheduledTasks = (ScheduledFutureTask[])scheduledTaskQueue.toArray(new ScheduledFutureTask[scheduledTaskQueue.size()]);
- ScheduledFutureTask[] var3 = scheduledTasks;
- int var4 = scheduledTasks.length;
- for(int var5 = 0; var5 < var4; ++var5) {
- ScheduledFutureTask<?> task = var3[var5];
- task.cancelWithoutRemove(false);
- }
- scheduledTaskQueue.clearIgnoringIndexes();
- }
- }
遍历scheduledTasks这个延时任务对立中所有的任务,通过cancelWithoutRemove将该任务取消。
至此轮询的整个生命周期完成。
回到SingleThreadEventExecutor的doStartThread方法,在run方法执行完毕后,说明Selector轮询结束,调用SingleThreadEventExecutor.this.cleanup()方法关闭Selector:
- protected void cleanup() {
- try {
- this.selector.close();
- } catch (IOException var2) {
- logger.warn("Failed to close a selector.", var2);
- }
- }
这次终于可以回到MultithreadEventExecutorGroup的构造,在children创建完毕后,用chooserFactory根据children的大小创建chooser,前面说过。
然后产生terminationListener异步中断监听对象,给每个NioEventLoop设置中断监听,然后对children进行了备份处理,通过readonlyChildren保存。
至此NioEventLoopGroup的创建全部结束。
Netty中NioEventLoopGroup的创建源码分析的更多相关文章
- 【Java】NIO中Selector的创建源码分析
在使用Selector时首先需要通过静态方法open创建Selector对象 public static Selector open() throws IOException { return Sel ...
- Netty服务端的启动源码分析
ServerBootstrap的构造: public class ServerBootstrap extends AbstractBootstrap<ServerBootstrap, Serve ...
- RocketMQ中Broker的启动源码分析(一)
在RocketMQ中,使用BrokerStartup作为启动类,相较于NameServer的启动,Broker作为RocketMQ的核心可复杂得多 [RocketMQ中NameServer的启动源码分 ...
- RocketMQ中Broker的启动源码分析(二)
接着上一篇博客 [RocketMQ中Broker的启动源码分析(一)] 在完成准备工作后,调用start方法: public static BrokerController start(Broker ...
- RocketMQ中Broker的消息存储源码分析
Broker和前面分析过的NameServer类似,需要在Pipeline责任链上通过NettyServerHandler来处理消息 [RocketMQ中NameServer的启动源码分析] 实际上就 ...
- RocketMQ中PullConsumer的启动源码分析
通过DefaultMQPullConsumer作为默认实现,这里的启动过程和Producer很相似,但相比复杂一些 [RocketMQ中Producer的启动源码分析] DefaultMQPullCo ...
- JDK中String类的源码分析(二)
1.startsWith(String prefix, int toffset)方法 包括startsWith(*),endsWith(*)方法,都是调用上述一个方法 public boolean s ...
- Springboot中mybatis执行逻辑源码分析
Springboot中mybatis执行逻辑源码分析 在上一篇springboot整合mybatis源码分析已经讲了我们的Mapper接口,userMapper是通过MapperProxy实现的一个动 ...
- Netty 心跳服务之 IdleStateHandler 源码分析
前言:Netty 提供的心跳介绍 Netty 作为一个网络框架,提供了诸多功能,比如我们之前说的编解码,Netty 准备很多现成的编解码器,同时,Netty 还为我们准备了网络中,非常重要的一个服务- ...
随机推荐
- vsftpd服务安装与虚拟用户配置
vsftpd的全名是“Very secure FTP Daemon” 一.安装vsftpd安装db4-util用于生成认证文件 yum -y install db4-utils 安装vsftpd yu ...
- leepcode作业解析-5-21
25.Nim游戏 你和你的朋友,两个人一起玩 Nim 游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头. 拿掉最后一块石头的人就是获胜者.你作为先手. 你们是聪明人,每一步都是最优解. 编 ...
- hdu-2544 最短路(最短路)
Time limit1000 ms Memory limit32768 kB 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到 ...
- UVa - 1593 Unix ls(STL)
给你一堆文件名,排序后按列优先的方式左对齐输出. 假设最长文件名长度是M,那么每一列都要有M+2字符,最后一列有M字符. inmanip真NB..orz #include <iostream&g ...
- Cplex: MIP Control Callback Methods
*本文主要记录和分享学习到的知识,算不上原创 *参考文献见链接 本文主要归纳了Cplex的Control callback常用的方法. 目录 NodeCallback SolveCallback Us ...
- selenium2用AutoIt上传文件
1.标签是input,如下图所示: WebElement e1= driver.findElement(By.id("load"));//输入要上传文件的地址e1.sendKeys ...
- 在ionic项目中使用极光推送实现推送 & 服务器端代码
ionic start -a jPushDemo -i com.lawxin.fengkong jpushdemo blank meteor add cordova:cn.jpush.phonegap ...
- 请求报文&响应报文
转自黑马程序员视频教程
- [python][oldboy] * **的用法
* 和**主要用在函数的参数中, # coding=utf8 """ 三种编码: 1 python程序代码的编码 # coding=utf8 2 设置/查看python程 ...
- 常见shell脚本命令整理
1.cat /dev/null > test.txt txt的文件内容被清空. 2.ls | xargs rm 目录中大量文件的删除 3.查看文件夹下文件个数 ls | wc -w 查看有多少个 ...