图像处理之增强---图像增强算法四种,图示与源码,包括retinex(ssr、msr、msrcr)和一种混合算法
申明:本文非笔者原创,原文转载自:http://blog.csdn.net/onezeros/article/details/6342661
两组图像:左边较暗,右边较亮
第一行是原图像,他们下面是用四种算法处理的结果
依次为:
1.一种混合算法
2.msr,multi-scale retinex
3.msrcr,multi-scale retinex with color restoration
4.ssr,single scale retinex
源码,retinex算法的三种,其源码是国外一个研究生的毕设项目
头文件:
/*
* Copyright (c) 2006, Douglas Gray (dgray@soe.ucsc.edu, dr.de3ug@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Douglas Gray ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "cv.h"
extern double* CreateKernel(double sigma);
extern int* CreateFastKernel(double sigma);
extern void FilterGaussian(IplImage* img, double sigma);
extern void FastFilter(IplImage *img, double sigma);
extern void Retinex
(IplImage *img, double sigma, int gain = 128, int offset = 128);
extern void MultiScaleRetinex
(IplImage *img, int scales, double *weights, double *sigmas, int gain = 128, int offset = 128);
extern void MultiScaleRetinexCR
(IplImage *img, int scales, double *weights, double *sigmas, int gain = 128, int offset = 128,
double restoration_factor = 6, double color_gain = 2);
实现:
/*
* Copyright (c) 2006, Douglas Gray (dgray@soe.ucsc.edu, dr.de3ug@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Douglas Gray ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "retinex.h"
#include <math.h>
//#define USE_EXACT_SIGMA
#define pc(image, x, y, c) image->imageData[(image->widthStep * y) + (image->nChannels * x) + c]
#define INT_PREC 1024.0
#define INT_PREC_BITS 10
inline double int2double(int x) { return (double)x / INT_PREC; }
inline int double2int(double x) { return (int)(x * INT_PREC + 0.5); }
inline int int2smallint(int x) { return (x >> INT_PREC_BITS); }
inline int int2bigint(int x) { return (x << INT_PREC_BITS); }
//
// CreateKernel
//
// Summary:
// Creates a normalized 1 dimensional gaussian kernel.
//
// Arguments:
// sigma - the standard deviation of the gaussian kernel.
//
// Returns:
// double* - an array of values of length ((6*sigma)/2) * 2 + 1.
//
// Note:
// Caller is responsable for deleting the kernel.
//
double*
CreateKernel(double sigma)
{
int i, x, filter_size;
double* filter;
double sum;
// Reject unreasonable demands
if ( sigma > 200 ) sigma = 200;
// get needed filter size (enforce oddness)
filter_size = (int)floor(sigma*6) / 2;
filter_size = filter_size * 2 + 1;
// Allocate kernel space
filter = new double[filter_size];
// Calculate exponential
sum = 0;
for (i = 0; i < filter_size; i++) {
x = i - (filter_size / 2);
filter[i] = exp( -(x*x) / (2*sigma*sigma) );
sum += filter[i];
}
// Normalize
for (i = 0, x; i < filter_size; i++)
filter[i] /= sum;
return filter;
}
//
// CreateFastKernel
//
// Summary:
// Creates a faster gaussian kernal using integers that
// approximate floating point (leftshifted by 8 bits)
//
// Arguments:
// sigma - the standard deviation of the gaussian kernel.
//
// Returns:
// int* - an array of values of length ((6*sigma)/2) * 2 + 1.
//
// Note:
// Caller is responsable for deleting the kernel.
//
int*
CreateFastKernel(double sigma)
{
double* fp_kernel;
int* kernel;
int i, filter_size;
// Reject unreasonable demands
if ( sigma > 200 ) sigma = 200;
// get needed filter size (enforce oddness)
filter_size = (int)floor(sigma*6) / 2;
filter_size = filter_size * 2 + 1;
// Allocate kernel space
kernel = new int[filter_size];
fp_kernel = CreateKernel(sigma);
for (i = 0; i < filter_size; i++)
kernel[i] = double2int(fp_kernel[i]);
delete fp_kernel;
return kernel;
}
//
// FilterGaussian
//
// Summary:
// Performs a gaussian convolution for a value of sigma that is equal
// in both directions.
//
// Arguments:
// img - the image to be filtered in place.
// sigma - the standard deviation of the gaussian kernel to use.
//
void
FilterGaussian(IplImage* img, double sigma)
{
int i, j, k, source, filter_size;
int* kernel;
IplImage* temp;
int v1, v2, v3;
// Reject unreasonable demands
if ( sigma > 200 ) sigma = 200;
// get needed filter size (enforce oddness)
filter_size = (int)floor(sigma*6) / 2;
filter_size = filter_size * 2 + 1;
kernel = CreateFastKernel(sigma);
temp = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
// filter x axis
for (j = 0; j < temp->height; j++)
for (i = 0; i < temp->width; i++) {
// inner loop has been unrolled
v1 = v2 = v3 = 0;
for (k = 0; k < filter_size; k++) {
source = i + filter_size / 2 - k;
if (source < 0) source *= -1;
if (source > img->width - 1) source = 2*(img->width - 1) - source;
v1 += kernel[k] * (unsigned char)pc(img, source, j, 0);
if (img->nChannels == 1) continue;
v2 += kernel[k] * (unsigned char)pc(img, source, j, 1);
v3 += kernel[k] * (unsigned char)pc(img, source, j, 2);
}
// set value and move on
pc(temp, i, j, 0) = (char)int2smallint(v1);
if (img->nChannels == 1) continue;
pc(temp, i, j, 1) = (char)int2smallint(v2);
pc(temp, i, j, 2) = (char)int2smallint(v3);
}
// filter y axis
for (j = 0; j < img->height; j++)
for (i = 0; i < img->width; i++) {
v1 = v2 = v3 = 0;
for (k = 0; k < filter_size; k++) {
source = j + filter_size / 2 - k;
if (source < 0) source *= -1;
if (source > temp->height - 1) source = 2*(temp->height - 1) - source;
v1 += kernel[k] * (unsigned char)pc(temp, i, source, 0);
if (img->nChannels == 1) continue;
v2 += kernel[k] * (unsigned char)pc(temp, i, source, 1);
v3 += kernel[k] * (unsigned char)pc(temp, i, source, 2);
}
// set value and move on
pc(img, i, j, 0) = (char)int2smallint(v1);
if (img->nChannels == 1) continue;
pc(img, i, j, 1) = (char)int2smallint(v2);
pc(img, i, j, 2) = (char)int2smallint(v3);
}
cvReleaseImage( &temp );
delete kernel;
}
//
// FastFilter
//
// Summary:
// Performs gaussian convolution of any size sigma very fast by using
// both image pyramids and seperable filters. Recursion is used.
//
// Arguments:
// img - an IplImage to be filtered in place.
//
void
FastFilter(IplImage *img, double sigma)
{
int filter_size;
// Reject unreasonable demands
if ( sigma > 200 ) sigma = 200;
// get needed filter size (enforce oddness)
filter_size = (int)floor(sigma*6) / 2;
filter_size = filter_size * 2 + 1;
// If 3 sigma is less than a pixel, why bother (ie sigma < 2/3)
if(filter_size < 3) return;
// Filter, or downsample and recurse
if (filter_size < 10) {
#ifdef USE_EXACT_SIGMA
FilterGaussian(img, sigma)
#else
cvSmooth( img, img, CV_GAUSSIAN, filter_size, filter_size );
#endif
}
else {
if (img->width < 2 || img->height < 2) return;
IplImage* sub_img = cvCreateImage(cvSize(img->width / 2, img->height / 2), img->depth, img->nChannels);
cvPyrDown( img, sub_img );
FastFilter( sub_img, sigma / 2.0 );
cvResize( sub_img, img, CV_INTER_LINEAR );
cvReleaseImage( &sub_img );
}
}
//
// Retinex
//
// Summary:
// Basic retinex restoration. The image and a filtered image are converted
// to the log domain and subtracted.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
//
void
Retinex(IplImage *img, double sigma, int gain, int offset)
{
IplImage *A, *fA, *fB, *fC;
// Initialize temp images
fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
// Compute log image
cvConvert( img, fA );
cvLog( fA, fB );
// Compute log of blured image
A = cvCloneImage( img );
FastFilter( A, sigma );
cvConvert( A, fA );
cvLog( fA, fC );
// Compute difference
cvSub( fB, fC, fA );
// Restore
cvConvertScale( fA, img, gain, offset);
// Release temp images
cvReleaseImage( &A );
cvReleaseImage( &fA );
cvReleaseImage( &fB );
cvReleaseImage( &fC );
}
//
// MultiScaleRetinex
//
// Summary:
// Multiscale retinex restoration. The image and a set of filtered images are
// converted to the log domain and subtracted from the original with some set
// of weights. Typicaly called with three equaly weighted scales of fine,
// medium and wide standard deviations.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
//
void
MultiScaleRetinex(IplImage *img, int scales, double *weights, double *sigmas, int gain, int offset)
{
int i;
double weight;
IplImage *A, *fA, *fB, *fC;
// Initialize temp images
fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
// Compute log image
cvConvert( img, fA );
cvLog( fA, fB );
// Normalize according to given weights
for (i = 0, weight = 0; i < scales; i++)
weight += weights[i];
if (weight != 1.0) cvScale( fB, fB, weight );
// Filter at each scale
for (i = 0; i < scales; i++) {
A = cvCloneImage( img );
FastFilter( A, sigmas[i] );
cvConvert( A, fA );
cvLog( fA, fC );
cvReleaseImage( &A );
// Compute weighted difference
cvScale( fC, fC, weights[i] );
cvSub( fB, fC, fB );
}
// Restore
cvConvertScale( fB, img, gain, offset);
// Release temp images
cvReleaseImage( &fA );
cvReleaseImage( &fB );
cvReleaseImage( &fC );
}
//
// MultiScaleRetinexCR
//
// Summary:
// Multiscale retinex restoration with color restoration. The image and a set of
// filtered images are converted to the log domain and subtracted from the
// original with some set of weights. Typicaly called with three equaly weighted
// scales of fine, medium and wide standard deviations. A color restoration weight
// is then applied to each color channel.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
// restoration_factor - controls the non-linearaty of the color restoration.
// color_gain - controls the color restoration gain.
//
void
MultiScaleRetinexCR(IplImage *img, int scales, double *weights, double *sigmas,
int gain, int offset, double restoration_factor, double color_gain)
{
int i;
double weight;
IplImage *A, *B, *C, *fA, *fB, *fC, *fsA, *fsB, *fsC, *fsD, *fsE, *fsF;
// Initialize temp images
fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
fsA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
fsB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
fsC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
fsD = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
fsE = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
fsF = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
// Compute log image
cvConvert( img, fB );
cvLog( fB, fA );
// Normalize according to given weights
for (i = 0, weight = 0; i < scales; i++)
weight += weights[i];
if (weight != 1.0) cvScale( fA, fA, weight );
// Filter at each scale
for (i = 0; i < scales; i++) {
A = cvCloneImage( img );
FastFilter( A, sigmas[i] );
cvConvert( A, fB );
cvLog( fB, fC );
cvReleaseImage( &A );
// Compute weighted difference
cvScale( fC, fC, weights[i] );
cvSub( fA, fC, fA );
}
// Color restoration
if (img->nChannels > 1) {
A = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
B = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
C = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
// Divide image into channels, convert and store sum
cvCvtPixToPlane( img, A, B, C, NULL );
cvConvert( A, fsA );
cvConvert( B, fsB );
cvConvert( C, fsC );
cvReleaseImage( &A );
cvReleaseImage( &B );
cvReleaseImage( &C );
// Sum components
cvAdd( fsA, fsB, fsD );
cvAdd( fsD, fsC, fsD );
// Normalize weights
cvDiv( fsA, fsD, fsA, restoration_factor);
cvDiv( fsB, fsD, fsB, restoration_factor);
cvDiv( fsC, fsD, fsC, restoration_factor);
cvConvertScale( fsA, fsA, 1, 1 );
cvConvertScale( fsB, fsB, 1, 1 );
cvConvertScale( fsC, fsC, 1, 1 );
// Log weights
cvLog( fsA, fsA );
cvLog( fsB, fsB );
cvLog( fsC, fsC );
// Divide retinex image, weight accordingly and recombine
cvCvtPixToPlane( fA, fsD, fsE, fsF, NULL );
cvMul( fsD, fsA, fsD, color_gain);
cvMul( fsE, fsB, fsE, color_gain );
cvMul( fsF, fsC, fsF, color_gain );
cvCvtPlaneToPix( fsD, fsE, fsF, NULL, fA );
}
// Restore
cvConvertScale( fA, img, gain, offset);
// Release temp images
cvReleaseImage( &fA );
cvReleaseImage( &fB );
cvReleaseImage( &fC );
cvReleaseImage( &fsA );
cvReleaseImage( &fsB );
cvReleaseImage( &fsC );
cvReleaseImage( &fsD );
cvReleaseImage( &fsE );
cvReleaseImage( &fsF );
}
这种混合算法代码:
我参考一个matlab代码写的
c版
// author : onezeros.lee@gmail.com
// data : 4/20/2011
/*
%%%%%%%%%%%%%%%RGB normalization%%%%%%%%%%%%%%%%%%%%%%
%its cascaded implementation of 1 section of paper "A FAST SKIN REGION DETECTOR" by
%Phil Chen, Dr.Christos Greecos
%and
%section 2.1 of paper "Simple and accurate face detection in color images" by
%YUI TING PAI et al
% Coding by Madhava.S.Bhat, Dept of Electronics an communication
%Dr.Ambedkar Institute of Technology, Bangalore
%madhava.s@dr-ait.org
*/
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <iostream>
#include <algorithm>
using namespace std;
void cvCompensationGlobal1(IplImage* _src,IplImage* dst)
{
static const int B=0;
static const int G=1;
static const int R=2;
int width=_src->width;
int height=_src->height;
//double
IplImage* src=cvCreateImage(cvGetSize(_src),IPL_DEPTH_64F,3);
CvScalar minV=cvScalar(255,255,255,0);
for (int h=0;h<height;h++) {
unsigned char* p=(unsigned char*)_src->imageData+h*_src->widthStep;
double* pc=(double*)(src->imageData+h*src->widthStep);
for (int w=0;w<width;w++) {
for (int i=0;i<3;i++) {
*pc=*p;
if (minV.val[i]>*pc) {
minV.val[i]=*pc;
}
pc++;
p++;
}
}
}
cvSubS(src,minV,src);
int blackNum=0;
double total=0;
double acc[3]={0};
for (int h=0;h<height;h++) {
double* p=(double*)(src->imageData+h*src->widthStep);
for (int w=0;w<width;w++) {
if (p[0]<0.001&&p[1]<0.001&&p[2]<0.001) {
blackNum++;
p+=3;
continue;
}
double a=p[R];
double b=p[R];
if (p[B]<a) {
a=p[B];
}else {
b=p[B];
}
if (p[G]<a) {
a=p[G];
}else {
b=p[G];
}
total+=a+b;
for (int i=0;i<3;i++) {
acc[i]+=p[i];
}
p+=3;
}
}
double avgT=total/(2*(width*height-blackNum));
CvScalar avg;
IplImage* rgb[3];
for (int i=0;i<3;i++) {
rgb[i]=cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,1);
avg.val[i]=(double)acc[i]/(width*height);
avg.val[i]=avgT/avg.val[i];
}
cvSplit(src,rgb[0],rgb[1],rgb[2],0);
for (int i=0;i<3;i++) {
cvScale(rgb[i],rgb[i],avg.val[i]);//bigger than 255
}
cvMerge(rgb[0],rgb[1],rgb[2],0,src);
//y component only
IplImage* y=cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,1);
for (int h=0;h<height;h++) {
double* psrc=(double*)(src->imageData+h*src->widthStep);
double* py=(double*)(y->imageData+h*y->widthStep);
for (int w=0;w<width;w++) {
*py++=psrc[R]*0.299+psrc[G]*0.587+psrc[B]*0.114;
psrc+=3;
}
}
double maxY=0;
double minY=0;
cvMinMaxLoc(y,&minY,&maxY);
double sumY=0;
//scale
for (int h=0;h<height;h++) {
double* p=(double*)(y->imageData+h*y->widthStep);
for (int w=0;w<width;w++) {
*p=(*p-minY)/(maxY-minY);
sumY+=*p;
p++;
}
}
sumY*=255;
sumY/=width*height;
double scale=1.;
if (sumY<64) {
scale=1.4;
}else if (sumY>192) {
scale=0.6;
}
if (abs(scale-1.)>0.001) {
for (int h=0;h<height;h++) {
double* psrc=(double*)(src->imageData+h*src->widthStep);
unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep;
double t[3];
for (int w=0;w<width;w++) {
t[0]=pow(psrc[R],scale);
t[1]=pow(psrc[G],scale);
t[2]=psrc[B];
for (int i=0;i<3;i++) {
if (t[i]>255) {
pdst[i]=255;
}else {
pdst[i]=(unsigned char)t[i];
}
}
psrc+=3;
pdst+=3;
}
}
}else{
for (int h=0;h<height;h++) {
double* psrc=(double*)(src->imageData+h*src->widthStep);
unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep;
for (int w=0;w<width;w++) {
for (int i=0;i<3;i++) {
double t=*psrc++;
if (t>255) {
*pdst++=255;
}else {
*pdst++=(unsigned char)t;
}
}
}
}
}
//free memory
cvReleaseImage(&src);
cvReleaseImage(&y);
for (int i=0;i<3;i++) {
cvReleaseImage(&rgb[i]);
}
}
matlab 版,算法没问题,但代码写的不太好,我做了点修改
%%%%%%%%%%%%%%%RGB normalisation%%%%%%%%%%%%%%%%%%%%%%
%its cascaded implementain of 1 section of paper "A FAST SKIN REGION DETECTOR" by
%Phil Chen, Dr.Christos Greecos
%and
%section 2.1 of paper "Simple and accurate face detection in color images" by
%YUI TING PAI et al
% Coding by Madhava.S.Bhat, Dept of Electronics an communication
%Dr.Ambedkar Institute of Technology, Bangalore
%madhava.s@dr-ait.org
function[]= imag_improve_rgb(IMG)
figure,imshow(IMG)
title('original')
R=double(IMG(:,:,1));
G=double(IMG(:,:,2));
B=double(IMG(:,:,3));
[H,W]=size(R);
% minR=0;
% minG=0;
% minB=0;
% [srow,scol]=find(R==0 & G==0 & B==0);
% if(isempty(srow) && isempty(scol))
minR=min(min(R))
minG=min(min(G))
minB=min(min(B))
% end
R=R-minR;
G=G-minG;
B=B-minB;
S=zeros(H,W);
[srow,scol]=find(R==0 & G==0 & B==0);
[sm,sn]=size(srow);
for i=1:sm
S(srow(i),scol(i))=1;
end
mstd=sum(sum(S))
Nstd=(H*W)-mstd;
Cst=0;
Cst=double(Cst);
for i=1:H
for j=1:W
a=R(i,j);
b=R(i,j);
if(B(i,j)<a)
a=B(i,j);
else
b=B(i,j);
end
if(G(i,j)<a)
a=G(i,j);
else
b=G(i,j);
end
Cst=a+b+Cst;
end
end
%%%%sum of black pixels%%%%%%%%%%%
blacksumR=0;
blacksumG=0;
blacksumB=0;
for i=1:sm
blacksumR=blacksumR+R(srow(i),scol(i));
blacksumG=blacksumG+G(srow(i),scol(i));
blacksumB=blacksumB+B(srow(i),scol(i));
end
Cstd = Cst/(2*Nstd)
CavgR=sum(sum(R))./(H*W)
CavgB=sum(sum(B))./(H*W)
CavgG=sum(sum(G))./(H*W)
Rsc=Cstd./CavgR
Gsc=Cstd./CavgG
Bsc=Cstd/CavgB
R=R.*Rsc;
G=G.*Gsc;
B=B.*Bsc;
C(:,:,1)=R;
C(:,:,2)=G;
C(:,:,3)=B;
C=C/255;
YCbCr=rgb2ycbcr(C);
Y=YCbCr(:,:,1);
figure,imshow(C)
title('aft 1st stage of compensation')
%normalize Y
minY=min(min(Y));
maxY=max(max(Y));
Y=255.0*(Y-minY)./(maxY-minY);
YEye=Y;
Yavg=sum(sum(Y))/(W*H)
T=1;
if (Yavg<64)
T=1.4
elseif (Yavg>192)
T=0.6
end
T
if (T~=1)
RI=R.^T;
GI=G.^T;
else
RI=R;
GI=G;
end
Cfinal(:,:,1)=uint8(RI);
Cfinal(:,:,2)=uint8(GI);
Cfinal(:,:,3)=uint8(B);
figure,imshow(Cfinal)
title('Light intensity compensated')
% YCbCr=rgb2ycbcr(Cnew);
http://blog.csdn.net/onezeros/article/details/6342661#
图像处理之增强---图像增强算法四种,图示与源码,包括retinex(ssr、msr、msrcr)和一种混合算法的更多相关文章
- [算法1-排序](.NET源码学习)& LINQ & Lambda
[算法1-排序](.NET源码学习)& LINQ & Lambda 说起排序算法,在日常实际开发中我们基本不在意这些事情,有API不用不是没事找事嘛.但必要的基础还是需要了解掌握. 排 ...
- Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图
Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图 分类: OpenCV图像处理2013-02-21 21:35 6459人阅读 评论(8) 收藏 举报 原文链接 ht ...
- Linux应用和系统库的2种安装方式---源码安装tarball和二进制rpm包
一.应用程序和系统库从哪里来? 两种机制,源码安装和二进制安装. 二.源码安装 tarball 1.核心思想是:利用开源代码,自己编译生成应用程序或者库,要求系统上必须已安装TMG(tar, make ...
- kafka原理和实践(四)spring-kafka消费者源码
系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...
- 量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python)(转)
量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python) 原文地址:http://blog.csdn.net/u012234115/article/details/728300 ...
- Spring第四天,BeanPostProcessor源码分析,彻底搞懂IOC注入及注解优先级问题!
- git工具 将源码clone到本地指定目录的三种方式
git工具 将源码clone到本地指定目录的三种方式 CreationTime--2018年7月27日15点34分 Author:Marydon 1.情景展示 运行git-bash.exe,输入命 ...
- 线程系列1--Java创建线程的几种方式及源码分析
线程--创建线程的几种方式及源码分析 开始整理下线程的知识,感觉这块一直是盲区,工作中这些东西一直没有实际使用过,感觉也只是停留在初步的认识.前段时间一个内推的面试被问到,感觉一脸懵逼.面试官说,我的 ...
- Flask框架 (四)—— 请求上下文源码分析、g对象、第三方插件(flask_session、flask_script、wtforms)、信号
Flask框架 (四)—— 请求上下文源码分析.g对象.第三方插件(flask_session.flask_script.wtforms).信号 目录 请求上下文源码分析.g对象.第三方插件(flas ...
随机推荐
- hdu 4939 2014 Multi-University Training Contest 7 1005
Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/ ...
- AC日记——魔术球问题 洛谷 P2765
题目描述 «问题描述: 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球. (1)每次只能在某根柱子的最上面放球. (2)在同一根柱子中,任何2个相邻球的编号之和为完全 ...
- 微信小程序之微信支付C#后台(统一下单)
一.微信小程序支付 1.微信小程序端请求支付接口 商户在小程序中先调用该接口在微信支付服务后台生成预支付交易单,返回正确的预支付交易后调起支付.具体可以查看接口示例. 接口传入参数示例: <xm ...
- 天梯赛 - L2-003 月饼
题目链接:https://www.patest.cn/contests/gplt/L2-003 现在只能做水题~ #include <iostream> #include <cstd ...
- es6 String.raw()
模板字符串可以是原始的: ES6还为原生的String对象,提供了一个raw方法. 若使用String.raw 作为模板字符串的前缀,则模板字符串可以是原始(raw)的.反斜线也不再是特殊字符,\n ...
- 总结下web开发中基础性的常识
一,HTML/5 1,浏览器渲染过程 主流浏览器渲染过程叫法有区别,但是主要流程还是相同的.Gecko 将视觉格式化元素组成的树称为“框架树”.每个元素都是一个框架.WebKit 使用的术语是“呈现树 ...
- 使用KNN对iris数据集进行分类——python
filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for lin ...
- Spring Boot + Elastic stack 记录日志
原文链接:https://piotrminkowski.wordpress.com/2019/05/07/logging-with-spring-boot-and-elastic-stack/ 作者: ...
- Netty-----初探
今天看gateway 实现的时候看到个哥们基于的netty实现的gateway.so,解析一下Netty. 废话少说,maven pom 引入,down 下jar包.看了下netty的包结构,还是挺明 ...
- Linux 嵌入式启动以及优化
转载:http://www.embeddedlinux.org.cn/html/jishuzixun/201312/19-2717.html 第一步: BootLoader -- U boot 1 ...