题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329

题意:

  给你面数分别为k1,k2,k3的三个骰子。

  给定a,b,c三个整数。

  三个骰子每扔一次,若骰子朝上的点数分别为a,b,c,则分数清零,否则当前分数+=骰子点数之和。

  当分数 > n时游戏结束。

  问你扔骰子次数的期望。

题意:

  表示状态:

    dp[i] = rest steps

    (当前分数为i时,剩余步数的期望)

  找出答案:

    ans = dp[0]

    刚开始分数为0。

  如何转移:

    由于此题中可以由高分数转移到低分数,所以转移存在环。

    一般有环dp用高斯消元做。

    但是,此题的所有环都跟dp[0]有关,也就是说所有的转移都能写成形如 dp[i] = a[i]*dp[0] + b[i] 的形式(分离系数)。

    那么求出a[0]和b[0]就可以行了,答案为dp[0] = b[0] / (1-a[0])。

    (1)dp[i] = sigma(dp[i+k]*p[k]) + dp[0]*p[0] + 1 (原转移方程,p[i]为扔出点数为i的概率,p[0]为扔出(a,b,c)的概率)

    (2)dp[i] = a[i]*dp[0] + b[i] (假设的)

    将(2)代入(1):

      dp[i] = sigma( (a[i+k]*dp[0] + b[i+k]) * p[k] ) + dp[0]*p[0] + 1

      dp[i] = sigma( a[i+k]*dp[0]*p[k] + b[i+k]*p[k] ) + dp[0]*p[0] + 1

      dp[i] = ( sigma(a[i+k]*p[k]) + p[0] )*dp[0] + sigma(b[i+k]*p[k]) + 1

    系数对应相等:

      a[i] = sigma(a[i+k]*p[k]) + p[0]

      b[i] = sigma(b[i+k]*p[k]) + 1

    递推求出a[i] & b[i]即可,求的时候要保证i <= n(有意义)。

    dp[0] = b[0] / (1-a[0])。

AC Code:

 // state expression:
// dp[i] = rest steps
// i: present score
//
// find the answer:
// ans = dp[0]
//
// transferring:
// 1) dp[i] = sigma(dp[i+k]*p[k]) + dp[0]*p[0] + 1
// 2) dp[i] = a[i]*dp[0] + b[i]
// ***solve:
// dp[i] = sigma( (a[i+k]*dp[0] + b[i+k]) * p[k] ) + dp[0]*p[0] + 1
// dp[i] = sigma( a[i+k]*dp[0]*p[k] + b[i+k]*p[k] ) + dp[0]*p[0] + 1
// dp[i] = ( sigma(a[i+k]*p[k]) + p[0] )*dp[0] + sigma(b[i+k]*p[k]) + 1
// ***result:
// a[i] = sigma(a[i+k]*p[k]) + p[0]
// b[i] = sigma(b[i+k]*p[k]) + 1
// ***run:
// cal a[i] & b[i]
// dp[0] = b[0] / (1-a[0])
//
// boundary:
// set a,b = 0
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 505
#define MAX_K 40 using namespace std; int n,t;
int k1,k2,k3;
int e1,e2,e3;
double p[MAX_K];
double a[MAX_N];
double b[MAX_N];
double dp[MAX_N]; void read()
{
cin>>n>>k1>>k2>>k3>>e1>>e2>>e3;
} void cal_pro()
{
memset(p,,sizeof(p));
p[]=1.0/(k1*k2*k3);
for(int i=;i<=k1;i++)
{
for(int j=;j<=k2;j++)
{
for(int k=;k<=k3;k++)
{
if(i!=e1 || j!=e2 || k!=e3)
{
p[i+j+k]+=p[];
}
}
}
}
} void cal_const()
{
memset(a,,sizeof(a));
memset(b,,sizeof(b));
for(int i=n;i>=;i--)
{
for(int k=;k<=k1+k2+k3;k++)
{
if(i+k>n) break;
a[i]+=a[i+k]*p[k];
b[i]+=b[i+k]*p[k];
}
a[i]+=p[];
b[i]+=1.0;
}
} void solve()
{
cal_pro();
cal_const();
dp[]=b[]/(1.0-a[]);
} void print()
{
printf("%.15f\n",dp[]);
} int main()
{
cin>>t;
while(t--)
{
read();
solve();
print();
}
}

ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】的更多相关文章

  1. ZOJ 3329 Problem Set (期望dp)

    One Person Game There is a very simple and interesting one-person game. You have 3 dice, namely Die1 ...

  2. ZOJ 3329 One Person Game 概率DP 期望 难度:2

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754 本题分数为0的概率不确定,所以不能从0这端出发. 设E[i]为到达成功所 ...

  3. zoj 3329 One Person Game 概率DP

    思路:这题的递推方程有点麻烦!! dp[i]表示分数为i的期望步数,p[k]表示得分为k的概率,p0表示回到0的概率: dp[i]=Σ(p[k]*dp[i+k])+dp[0]*p0+1 设dp[i]= ...

  4. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  5. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  6. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  7. 成环的概率dp(初级) zoj 3329

    原题地址:https://vjudge.net/problem/ZOJ-3329 题目大意: 有三个骰子,分别有k1,k2,k3个面,初始分数是0.第i骰子上的分数从1道ki.当掷三个骰子的点数分别为 ...

  8. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  9. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

随机推荐

  1. SqlServer 垂直分表

    当单表数据太多时.我们能够水平划分,參考 SqlServer 分区视图实现水平分表 ,水平划分能够提高表的一些性能. 而 垂直分表 则相对非常少见到和用到,由于这可能是数据库设计上的问题了.假设数据库 ...

  2. js:我们应该如何去了解JavaScript引擎的工作原理(转)

    http://www.nowamagic.net/librarys/veda/detail/1579 昨天收到一封来自深圳的一位前端童鞋的邮件,邮件内容如下(很抱歉,未经过他的允许,公开邮件内容,不过 ...

  3. iOS开发 - &quot;Cast from pointer to smaller type &#39;int&#39; loses information” 解决的方法

    今天要写一个联系人搜索算法. 百度了下, 在code4App中找到相关代码. 可是自己跑了下, 发现报错. 错误内容例如以下: "Cast from pointer to smaller t ...

  4. 分享一套C++入门基础视频

    本课程从C++起步.用户无需不论什么计算机基础,仅仅须要懂的主要的电脑操作,既可学习本课程.本课程适合在校大学生,在职人员等,通过本课程的学习,学员可掌握C++\MFC\VC++server端.网络编 ...

  5. mysql报错1872: Slave failed to initialize relay log info structure from the repository

    ERROR 1872 (HY000): Slave failed to initialize relay log info structure from the repository 在一台主机上增加 ...

  6. C#各种导入Excel文件的数据的方法总结

    在导入前都需要将上传的文件保存到服务器,所以避免重复的写这些代码,先贴出上传文件并保存到服务器指定路径的代码 protected void btnImport_Click(object sender, ...

  7. Leetcode Array 16 3Sum Closest

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  8. 【ORACLE】ORA-27102: out of memory报错的处理

    ************************************************************************ ****原文:blog.csdn.net/clark_ ...

  9. Spring中的scope配置和@scope注解

    Scope,也称作用域,在 Spring IoC 容器是指其创建的 Bean 对象相对于其他 Bean 对象的请求可见范围.在 Spring IoC 容器中具有以下几种作用域:基本作用域(single ...

  10. Android中读取图片EXIF元数据之metadata-extractor的使用

    一.引言及介绍 近期在开发中用到了metadata-extractor-xxx.jar 和 xmpcore-xxx.jar这个玩意, 索性查阅大量文章了解学习,来分享分享. 本身工作也是常常和处理大图 ...