题目链接:https://vjudge.net/problem/HDU-3811

Permutation

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 496    Accepted Submission(s): 238

Problem Description
In combinatorics a permutation of a set S with N elements is a listing of the elements of S in some order (each element occurring exactly once). There are N! permutations of a set which has N elements. For example, there are six permutations of the set {1,2,3}, namely [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1]. 
But Bob think that some permutations are more beautiful than others. Bob write some pairs of integers(Ai, Bi) to distinguish beautiful permutations from ordinary ones. A permutation is considered beautiful if and only if for some i the Ai-th element of it is Bi. We want to know how many permutations of set {1, 2, ...., N} are beautiful.
 
Input
The first line contains an integer T indicating the number of test cases.
There are two integers N and M in the first line of each test case. M lines follow, the i-th line contains two integers Ai and Bi.

Technical Specification
1. 1 <= T <= 50
2. 1 <= N <= 17
3. 1 <= M <= N*N
4. 1 <= Ai, Bi <= N

 
Output
For each test case, output the case number first. Then output the number of beautiful permutations in a line.
 
Sample Input
3
3 2
1 1
2 1
3 2
1 1
2 2
4 3
1 1
1 2
1 3
 
Sample Output
Case 1: 4
Case 2: 3
Case 3: 18
 
Author
hanshuai
 
Source
 
Recommend
lcy
 
 
题意:
给出m个(A,B),问n的全排列中有多少个满足:至少存在一个i,使得第Ai位为Bi?
 
 
题解:
1.状压DP,设dp[status][has]为:状态为status(前面含有哪几个数),且是否已经满足要求(has)的情况下有多少种。
2.剩下的就是类似TSP的状态转移了(感觉又像是TSP,又像是数位DP)。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e5;
const int MAXN = (<<)+; bool g[][];
LL dp[MAXN][];
int cnt[MAXN]; void init()
{
for(int s = ; s<MAXN; s++)
{
cnt[s] = ;
for(int j = ; j<; j++)
if(s&(<<j)) cnt[s]++;
}
} int main()
{
init();
int T, n, m, kase = ;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
memset(g, false, sizeof(g));
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
g[u][v] = true;
} memset(dp, , sizeof(dp));
dp[][] = ;
for(int s = ; s<(<<n); s++)
{
for(int i = ; i<; i++)
{
for(int j = ; j<n; j++)
if(!(s&(<<j)))
dp[s|(<<j)][i|g[cnt[s]+][j+]] += dp[s][i];
}
}
printf("Case %d: %lld\n", ++kase, dp[(<<n)-][]);
}
}

HDU3811 Permutation —— 状压DP的更多相关文章

  1. HDU 3811 Permutation 状压dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3811 Permutation Time Limit: 6000/3000 MS (Java/Othe ...

  2. HDU 4917 Permutation(拓扑排序 + 状压DP + 组合数)

    题目链接 Permutation 题目大意:给出n,和m个关系,每个关系为ai必须排在bi的前面,求符合要求的n的全排列的个数. 数据规模为n <= 40,m <= 20. 直接状压DP空 ...

  3. ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds      Me ...

  4. CodeForces 327E Axis Walking(状压DP+卡常技巧)

    Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...

  5. ZOJ - 3777(状压dp)

    The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...

  6. zoj3777 Problem Arrangement(状压dp,思路赞)

    The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...

  7. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  8. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  9. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

随机推荐

  1. mysql数据库查看各实例磁盘占用情况

    1.总体查看: use information_schema; select TABLE_SCHEMA, concat(truncate(sum(data_length)/1024/1024,2),' ...

  2. PowerMockito的简单的介绍

    转载:http://blog.csdn.net/u012881904/article/details/51334747 我们的依赖的配置 <properties> <powermoc ...

  3. iOS开发个人独立博客收集

    如今国内技术博客站点有非常多,如CSDN,CNBlog,ITEye等.论坛的话主要是要cocachina. 这里是我收集的iOS开发个人独立博客,文章用搜索引擎比較难搜到,都是牛人: OneV's D ...

  4. [Flex][Adobe Flash Builder 4.6]谷歌浏览器(Chrome)下运行Flex程序的问题

    今天刚开始学习Flex,发现用Chrome运行程序时会一片空白,上网查了相关资料后找到了解决方法:   打开Chrome,在地址栏输入:chrome://plugins/ 进入插件管理界面,查找Fla ...

  5. AWS上的游戏服务:Lumberyard + Amazon GameLift + Twitch

    开发一款世界级的游戏是一个非常困难,耗时和昂贵的过程.如今的游戏玩家要求越来越苛刻,他们希望既能够通过各种不同的终端设备来进行游戏 ,又要求游戏具有社交的功能. 因为此类游戏的开发期和推广期都非常长. ...

  6. python tkinter module的用法

    tkinter windows下从python3.2版本之后是自动安装的. python3.3之后的引入方式: >>> import _tkinter>>> imp ...

  7. 11-利用session校验图片认证码

    /****************************************************************产生随机验证码的servlet******************** ...

  8. XMLHttpRequest cannot load ''. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin ' ' is therefore not allowed access.

    ajax跨域 禁止访问! 利用Access-Control-Allow-Origin响应头解决跨域请求

  9. linux下安装go

    在centOS下,安装go的环境,如下: 下载压缩包,wget https://storage.googleapis.com/golang/go1.8.linux-amd64.tar.gz 解压该文件 ...

  10. Makefile浅尝

    [0]README makefile定义: 一个工程中的源文件不计其数,其按类型.功能.模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要一先编译,哪些文件需要后编译,哪 ...