51nod 1040
题解:我们要求的是这个式子: $ \sum\limits_{i = 1}^n {\gcd (n,i)} $ (下面式子中的d都是n的因子)
变形下 $ \sum\limits_{d = 1}^n {d\sum\limits_{i = 1}^n {\left[ {\gcd (n,i) = d} \right]} } $
即$ \sum\limits_{d = 1}^n {d\sum\limits_{i = 1}^{\frac{n}{d}} {\left[ {\gcd (\frac{n}{d},i) = 1} \right]} } $
所以我们要求的就是 $ \sum\limits_{d = 1}^n {d * \varphi \left( {\frac{n}{d}} \right)} $
直接算就好了
51nod 1040的更多相关文章
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...
- 51nod 1040 欧拉函数
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 1040 最大公约数之和 题目来源: rihkddd 基准时间限制 ...
- 51nod 1040:最大公约数之和(数论)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 给出一个n,求1-n这n个数,同n的最大公约数的和. ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod 1040 最大公约数的和 欧拉函数
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= ...
- 51nod 1040 最大公约数之和 | 数论
给出一个n,求1-n这n个数,同n的最大公约数的和 n<=1e9 考虑枚举每个因数,对答案贡献的就是个数*大小
- 51nod水题记
妈呀51nod已经刷不动了又开始跟bzoj一样总是得看题解了...那么发一下总结吧... 1051:最大子矩阵 #include<cstdio> #include<cstring&g ...
随机推荐
- rsync的几则tips(渗透技巧)
转自91ri 关于rsync rsync(remote synchronize)——Linux下实现远程同步功能的软件,能同步更新两处计算机的文件及目录.在同步文件时,可以保持源文件的权限.时间.软硬 ...
- MongoDB基本文件操作
MongoDB中主要的文件操作有put.get.list.search几种.能够非常方便地进行文件存储于查找,下面是一个简单的演示样例. 1.利用dd命令生成要求大小随机文件 2.使用put命令将生 ...
- 应用程序之UITableView的Plain用法和cell缓存池优化
效果展示 过程分析 代码实现 cell缓存池优化 一.效果展示 二.过程分析 首先通过三步创建数据,展示数据 监听选中某一个cell时调用的方法 在cell中创建一个对话框 修改对话框中的值,并且重新 ...
- [Java开发之路](23)装箱与拆箱
1. 简单介绍 大家对基本数据类型都很熟悉.比如 int.float.double.boolean.char 等.基本数据类型是不具备对象的特性,比方基本类型不能调用方法.功能简单. ..,为了让基本 ...
- Java 加解密技术系列之 DES
序 前几篇文章讲的都是单向加密算法.当中涉及到了 BASE64.MD5.SHA.HMAC 等几个比較常见的加解密算法. 这篇文章,以及后面几篇.打算介绍几个对称加密算法.比方:DES.3DES(Tri ...
- ngui 输入事件处理
NGUI不仅提供了图形接口,还提供了输入事件接口!事件接口是通过UICamera来实现的. Unity3d 为我们提供的原装的input尽管非常方便,但真正跨平台使用时(尤其是跨手机与Pc机时)仍然不 ...
- BZOJ 2005 NOI2010 能量採集 数论+容斥原理
题目大意:给定n和m.求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1 i和j的限制不同,传统的线性筛法失效了.这里我们考虑容斥原理 令f[x]为GCD(i, ...
- 完好用户体验: 活用window.location与window.open解决页面跳转问题
原文地址: JavaScript Redirects and window.open原文日期: 2014年08月27日翻译日期: 2014年08月31日翻译人员: 铁锚 (译者注: 本文解决的是按 C ...
- JavaWeb学习总结第三篇--走进JSP页面元素
JavaWeb学习(三)—走进JSP页面元素 JSP:Java Server Pages,译为Java服务器页面.其脚本采用Java语言,继承了Java所有优点.JSP元素可以分为指令元素.脚本元素和 ...
- PostgreSQL 封装操作数据库方法
/// <summary> /// 模块名:操作postgres数据库公共类 /// 作用:根据业务需求对数据库进行操作. /// 注:系统中的公共方法,根据需要,逐一引入 /// 作者: ...