事实上感觉四个的形状分别是这样:

spj报错:

1:c 越界

2:x,y 越界

3:mp[x][y] 已被占用

4:mp[x][y] 从未被使用

题解:

初看这个问题,似乎无从下手,于是我们可以先考虑最简单的情况,既n = 2时

0 0 0 1 这时,无论公主在哪个格子,我们都可以用一块毯子填满

继续考虑n = 4的情况

我们已经知道了解决2 * 2的格子中有一个障碍的情况如何解决,因此我们可以尝试构造这种情况

首先,显然可以将4 4的盘面划分成4个2 2的小盘面,其中一块已经存在一个障碍了

而我们只需在正中间的2 * 2方格中放入一块地毯,就可以使所有小盘面都有一个障碍

于是,n = 4的情况就解决了

我们可以将n = 4时的解法可以推广到一般情况,既当n = 2 k时,我们均可以将问题划分为4个n = 2 k – 1的子问题,然后分治解决即可。

下面附上代码(算法:分治):

#include<cstdio>
typedef long long ll;
ll x,y,len; int k;
ll fun(int k)
{
ll sum=1;
for(int i=1;i<=k;++i) sum*=2;
return sum;
}
void solve(ll x,ll y,ll a,ll b,ll l)
{
if(l==1) return;
if(x-a<=l/2-1 && y-b<=l/2-1)
{
printf("%lld %lld 1\n",a+l/2,b+l/2);
solve(x,y,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else if(x-a<=l/2-1 && y-b>l/2-1)
{
printf("%lld %lld 2\n",a+l/2,b+l/2-1);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(x,y,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else if(x-a>l/2-1 && y-b<=l/2-1)
{
printf("%lld %lld 3\n",a+l/2-1,b+l/2);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(x,y,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else
{
printf("%lld %lld 4\n",a+l/2-1,b+l/2-1);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(x,y,a+l/2,b+l/2,l/2);
}
}
int main()
{
scanf("%d %lld %lld",&k,&x,&y);
len=fun(k);
solve(x,y,1,1,len);
return 0;
}

洛谷 P1228 【地毯填补问题】的更多相关文章

  1. 洛谷P1228 地毯填补问题

    P1228 地毯填补问题 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站 ...

  2. 浅谈分治 —— 洛谷P1228 地毯填补问题 题解

    如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子 ...

  3. [洛谷P1228]地毯填补问题 题解(分治)

    Description 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站立的地方外的 ...

  4. P1228 地毯填补问题(分治)

    P1228 地毯填补问题(分治) 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将 ...

  5. 洛谷 P3397 地毯

    P3397 地毯 题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整 ...

  6. 洛谷P1228 分治

    https://www.luogu.org/problemnew/show/P1228 我真傻,真的,我单知道这种题目可以用dfs剪枝过,没有想到还能构造分治,当我敲了一发dfs上去的时候,只看到一个 ...

  7. 洛谷 P3397 地毯 【二维差分标记】

    题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题 ...

  8. 洛谷-铺地毯-NOIP2011提高组复赛

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  9. 洛谷P3397 地毯(差分)

    二维平面上的差分,我们可以对每行处理. 比如我们要把(2,2)(5,5)之间的矩形加上1,可以这样处理. 0 0 0 0 0 0 0 +1 0 0 0 -1 0 +1 0 0 0 -1 0 +1 0 ...

随机推荐

  1. IOS字符串截取保留小数点后两位

    -(NSString*)getTheCorrectNum:(NSString*)tempString { //计算截取的长度 NSUInteger endLength = tempString.len ...

  2. String常用方法简介

    1. 创建String对象的常用方法 (1) String s1 = "mpptest" (2)  String s2 = new String(); (3) String s3 ...

  3. Codeforces Round #528-A. Right-Left Cipher(字符串模拟)

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  4. 通过jcrop和canvas的画布功能完成对图片的截图功能与视频的截图功能实现

    最近因为工作需要,做了视频截图和图截图的功能.大概需求是,用户点击某个按钮,可以对图片区域进行部分截取,然后进行进一步的业务操作. 首先说图片截图功能的思路, (1)下载Jcrop插件,添加css和j ...

  5. Identity Service

    Identity Service - 解析微软微服务架构eShopOnContainers(二)   接上一篇,众所周知一个网站的用户登录是非常重要,一站式的登录(SSO)也成了大家讨论的热点.微软在 ...

  6. B -- RE:从零开始的异世界生活 线段树

    http://www.ifrog.cc/acm/problem/1117?contest=1016&no=1 其实我是第一次这样用线段树. 首先把所有出现过的数字全部离散化.那么数字就是从[1 ...

  7. 拖拽调整Div大小

    今天写了一天这个jquery插件: 可以实现对div进行拖拽来调整大小的功能. (function ($) { $.fn.dragDivResize = function () { var delta ...

  8. 部署WebService服务碰到的一个小问题

    在部署WebService服务到IIS上之后,发现一直无法在浏览器访问到编写的asmx文件,一直提示404或403错误.提示当前访问的文件时脚本文件. 1.首先检查了在IIS上部署WebService ...

  9. display:none和visibility:hidden v-show和v-if的区别

    隐藏元素display:none 和 visibility:hidden的区别visibility:hidden可以隐藏某个元素,但是隐藏的元素仍要占据空间,仍要影响布局display:none不会占 ...

  10. Kendo UI 特效概述

    Kendo UI 特效概述 Kendo UI Fx 提供了一个丰富,可扩展,性能经过优化的工具集合用来完成 HTML 元素的过渡显示.每种特效近可能的使用 CSS Transition ,对于一些老版 ...