tensorflow weight_variable going
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') if __name__ == '__main__':
# 读入数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# x为训练图像的占位符、y_为训练图像标签的占位符
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10]) # 将单张图片从784维向量重新还原为28x28的矩阵图片
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一层卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 第二层卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # 全连接层,输出为1024维的向量
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 把1024维的向量转换成10维,对应10个类别
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# 同样定义train_step
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 定义测试的准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) for i in range(20000):
batch = mnist.train.next_batch(50)
# 每100步报告一次在验证集上的准确度
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # 训练结束后报告在测试集上的准确度
print("test accuracy %g" % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
#coding: utf-8
from tensorflow.examples.tutorials.mnist import input_data
import scipy.misc
import os
# 读取MNIST数据集。如果不存在会事先下载。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 我们把原始图片保存在MNIST_data/raw/文件夹下
# 如果没有这个文件夹会自动创建
save_dir = 'MNIST_data/raw/'
if os.path.exists(save_dir) is False:
os.makedirs(save_dir)
# 保存前20张图片
for i in range(20):
# 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始)
image_array = mnist.train.images[i, :]
# TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。
image_array = image_array.reshape(28, 28)
# 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg
filename = save_dir + 'mnist_train_%d.jpg' % i
# 将image_array保存为图片
# 先用scipy.misc.toimage转换为图像,再调用save直接保存。
scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename)
print('Please check: %s ' % save_dir)
tensorflow weight_variable going的更多相关文章
- tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...
- Tensorflow实践:CNN实现MNIST手写识别模型
前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
- TensorFlow框架(4)之CNN卷积神经网络
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
- Tensorflow卷积神经网络
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. ...
- TensorFlow实现线性回归模型代码
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as ...
- TensorFlow 实战之实现卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
随机推荐
- poj 1703 Find them, Catch them(种类并查集和一种巧妙的方法)
Find them, Catch them Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 36176 Accepted: ...
- Flatify分页
Flatify分页:<ul uib-pagination total-items="siteCount" items-per-page="1" max-s ...
- Pycharm下HTMLTestRunner不生成测试报告
网上搜索资料,最终找到了本次解决的方案: 1.修改Edit Configurations... 2.将测试脚本从Python tests中删除,再Python下新增脚本,这样就不会运行自带的unitt ...
- iOS开发 - UIViewController控制器管理
创建一个控制器 控制器常见的创建方式有下面几种 //通过storyboard创建 //直接创建 ViewController *vc = [[ViewController alloc] init]; ...
- 关闭和定时显示DIV
<script type="text/javascript"> $(function(){ $('#ad1').css('display','block'); }) f ...
- IOS版App的控件元素定位
前言 Android版App的控件元素可以通过Android studio自带的工具uiautomatorviewer来协助定位! IOS版App的控件元素可以通过Appium来实现(未实现),或ap ...
- CXF实战之自己定义拦截器(五)
CXF已经内置了一些拦截器,这些拦截器大部分默认加入到拦截器链中,有些拦截器也能够手动加入,如手动加入CXF提供的日志拦截器.也能够自己定义拦截器.CXF中实现自己定义拦截器非常easy.仅仅要继承A ...
- 【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ
[BZOJ4476][Jsoi2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成 ...
- springboot实战--笔记
由于这本书看过一遍,所以这里是二次复习,记录的东西比较少,就不分章节了. 共12章,524页,预计时间是18h 第一章 spring基础: 第二章 spring常用配置: bean的Scope:sin ...
- virtualbox Units specified don't exist. SHSUCDX can't install.
version infomatin: virtual box: 5.1.12 platform: win10 x64 target OS: win7 x64 问题 在win10系统上,使用virtua ...