# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') if __name__ == '__main__':
# 读入数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# x为训练图像的占位符、y_为训练图像标签的占位符
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10]) # 将单张图片从784维向量重新还原为28x28的矩阵图片
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一层卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 第二层卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # 全连接层,输出为1024维的向量
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 把1024维的向量转换成10维,对应10个类别
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# 同样定义train_step
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 定义测试的准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) for i in range(20000):
batch = mnist.train.next_batch(50)
# 每100步报告一次在验证集上的准确度
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # 训练结束后报告在测试集上的准确度
print("test accuracy %g" % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

#coding: utf-8
from tensorflow.examples.tutorials.mnist import input_data
import scipy.misc
import os

# 读取MNIST数据集。如果不存在会事先下载。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 我们把原始图片保存在MNIST_data/raw/文件夹下
# 如果没有这个文件夹会自动创建
save_dir = 'MNIST_data/raw/'
if os.path.exists(save_dir) is False:
os.makedirs(save_dir)

# 保存前20张图片
for i in range(20):
# 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始)
image_array = mnist.train.images[i, :]
# TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。
image_array = image_array.reshape(28, 28)
# 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg
filename = save_dir + 'mnist_train_%d.jpg' % i
# 将image_array保存为图片
# 先用scipy.misc.toimage转换为图像,再调用save直接保存。
scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename)

print('Please check: %s ' % save_dir)

tensorflow weight_variable going的更多相关文章

  1. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  2. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  3. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  4. TensorFlow框架(4)之CNN卷积神经网络

    1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...

  5. Tensorflow之卷积神经网络(CNN)

    前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...

  6. Tensorflow卷积神经网络

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. ...

  7. TensorFlow实现线性回归模型代码

    模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as ...

  8. TensorFlow 实战之实现卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...

  9. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

随机推荐

  1. maven命令学习-发布上传jar包-deploy

    Maven学习六之利用mvn deploy命令上传包 转http://blog.csdn.net/woshixuye/article/details/8133050 mvn:deploy在整合或者发布 ...

  2. wpf中的样式与模板

    1.WPF样式类似于Web应用程序中的CSS,在WPF中可以为控件定义统一的样式(Style).样式属于资源的一种,例如为Button定义统一的背景颜色和字体: <Window.Resource ...

  3. LINQ to SQL 语句(1)之 Where

    LINQ to SQL 语句(1)之 Where Where 操作 适用场景:实现过滤,查询等功能. 说明:与 SQL 命令中的 Where 作用相似,都是起到范围限定也就是过滤作用的 ,而判断条 件 ...

  4. mybatis学习总结(三)——增删查改

    映射器是mybatis的基础和核心,下面学习下映射器的使用 映射器的主要元素 select  查询语句,可以自定义参数和返回结果集 insert  插入语句,返回一个整数,代表插入的条数 update ...

  5. r squared

    multiple r squared adjusted r squared http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfF ...

  6. 无法启动FTP站点,服务目前停止

    在本地搭建了一个FTP服务器(windows搭建FTP服务器实战),再启动的时候提示错误: 错误提示信息: 根据提示可以查出问题原因:FTP服务没有开启 启动服务,再次重启站点服务.一切OK. 亲测好 ...

  7. Struts action

    <action name="KnowledgeBankManageAction_*" class="knowledgeBankManageAction" ...

  8. 【bzoj2286】[Sdoi2011]消耗战

    虚树入门题: #include<cstdio> #include<cstring> #include<algorithm> #include<ctime> ...

  9. bzoj4486: [Jsoi2015]串分割

    肉丝哥哥钦定好题 话说我的blog现在为什么到处都是肉丝哥哥 先来想一个弱化版,假如能够n整除K怎么做? 把每个数字看成一个字符串,按字典序排名,这个可以后缀数组解决,然后暴力枚举每种情况,O(1)判 ...

  10. codeforces B. Trees in a Row 解题报告

    题目链接:http://codeforces.com/problemset/problem/402/B 题目意思:给出n个数和公差k,问如何调整使得ai + 1 - ai = k.(1 ≤ i < ...