LightOJ1236 —— 唯一分解定理 + 最小公倍数
题目链接:https://vjudge.net/problem/LightOJ-1236
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
Sample Input |
Output for Sample Input |
15 2 3 4 6 8 10 12 15 18 20 21 24 25 27 29 |
Case 1: 2 Case 2: 2 Case 3: 3 Case 4: 5 Case 5: 4 Case 6: 5 Case 7: 8 Case 8: 5 Case 9: 8 Case 10: 8 Case 11: 5 Case 12: 11 Case 13: 3 Case 14: 4 Case 15: 2 |
题意:
求1到n(1e14)之内,有多少对数(i,j),其中i<=j,使得LCM(i,j)= n,LCM为最小公倍数。
题解:
1.设pi为第i个质数。设两个数A、B,他们可表示为:A = p1^a1 * p2^a2…… ,B = p1^b1 * p2^b2……。
那么他们的最小公倍数为:LCM(A, B) = p1^max(a1,b1) * p2^max(a2, b2)……。
2.对n进行质因数分解,得到: n = p1^c1 * p2^c2……。当 LCM(A, B) = n时, ci = max(ai, bi),即要么 ci = ai,要么ci = bi。
3 当ci = ai时, bi的可选择范围为[0,ci]共ci+1种;同理当ci = bi时,ai也有ci+1种选择。但是 (ai=ci,bi=ci)被重复计算了一次,所以对于素数pi,总共有 2*ci+1种选择。所以,当不考虑A、B的大小时,总共有 ∏ 2*ci+1对(A,B),使得 LCM(A, B) = n。
4.再考虑回A、B的大小限制,即A<=B,可知除了A = B = n时,其他的组合都出现了两次,即(A,B)和(B,A)都存在,而要门只需要A<=B的那一个。总的来说,最终有 ((∏ 2*ci+1)+1)/2对 (A,B)满足条件。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[MAXN/];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[]&& prime[j]<MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int fatCnt;
LL factor[][];
int getFactors(LL n)
{
LL tmp = n;
fatCnt = ;
for(int i = ; prime[i]<=tmp/prime[i]; i++)
{
if(tmp%prime[i]==)
{
factor[++fatCnt][] = prime[i];
factor[fatCnt][] = ;
while(tmp%prime[i]==) tmp /= prime[i], factor[fatCnt][]++;
}
}
if(tmp>) factor[++fatCnt][] = tmp, factor[fatCnt][] = ;
} int main()
{
getPrime();
int T, kase = ;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%lld", &n);
getFactors(n);
LL sum = ;
for(int i = ; i<=fatCnt; i++)
sum *= *factor[i][]+; sum = (sum+)/;
printf("Case %d: %lld\n", ++kase, sum);
}
}
LightOJ1236 —— 唯一分解定理 + 最小公倍数的更多相关文章
- Uva 10791 最小公倍数的最小和 唯一分解定理
题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...
- LightOJ-1236 Pairs Forming LCM 唯一分解定理
题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- 唯一分解定理(以Minimun Sum LCM UVa 10791为例)
唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...
- hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- Uva10791 唯一分解定理模板
唯一分解定理: Uva10791 题意: 输入整数n,要求至少两个正整数,使得他们的最小公倍数为n,且这些整数的和最小 解法: 首先假设我们知道了一系列数字a1,a2,a3……an,他们的LCM是n, ...
- UVA10791-Minimum Sum LCM(唯一分解定理基本应用)
原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
随机推荐
- liteos事件(六)
1. 概述 1.1 基本概念 事件是一种实现任务间通信的机制,可用于实现任务间的同步,但事件通信只能是事件类型的通信,无数据传输.一个任务可以等待多个事件的发生:可以是任意一个事件发生时唤醒任务进行事 ...
- 2017 [六省联考] T6 寿司餐厅
4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 450 Solved: 316[Submit][Status ...
- 管理SQL Server监控
http://blog.csdn.net/DBA_Huangzj/article/category/1133081 http://www.cnblogs.com/bhtfg538/archive/20 ...
- UITableView 滚动时使用reloaddata出现 crash'-[__NSCFArray objectAtIndex:]: index (1) beyond bounds (0)' Crash
例子: - (UITableViewCell *) tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)in ...
- 在Dev GridControl中添加颜色可变的ProgressBar z
在使用DevExpress,GridControl自带的ProgressBarControl的时候 由于无法通过BackColor/ForeColor来改变进度条的颜色所以很多特效是实现不了的.如下面 ...
- npm、yarn、pnpm
它们都是当前主流的包管理工具 pnpm:https://github.com/pnpm/pnpm yarn: https://github.com/yarnpkg/yarn npm: https:// ...
- java解析xml汇总
[目录] 一.[基础知识——扫盲] 二.[DOM.SAX.JDOM.DOM4j简单使用介绍] 三.[性能测试] 四.[对比] 五.[小插曲XPath] 六.[补充] 关键字:Java解析xml.解析x ...
- 【翻译自mos文章】使用asmcmd命令在本地和远程 asm 实例之间 拷贝asm file的方法
使用asmcmd命令在本地和远程 asm 实例之间 拷贝asm file的方法 參考原文: How to Copy asm files between remote ASM instances usi ...
- Go语言阅读小笔记,来自知呼达达关于unsafe.Pointer的分享.
第一式 - 获得Slice和String的内存数据 func stringPointer(s string) unsafe.Pointer { p := (*reflect.StringHeader) ...
- Android手机需要安装任务管理软件吗?
使用android手机的用户可能都安装了任务管理的软件,使用android手机真的有必要安装结束任务的软件吗?大家在使用中也都发现了,很多软件在被结束后,马上就会又出现在任务列表里,或是稍等一会自己也 ...