题目链接:https://vjudge.net/problem/LightOJ-1236

1236 - Pairs Forming LCM
Time Limit: 2 second(s) Memory Limit: 32 MB

Find the result of the following code:

long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        for( int j = i; j <= n; j++ )
           if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

Output for Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

题意:

求1到n(1e14)之内,有多少对数(i,j),其中i<=j,使得LCM(i,j)= n,LCM为最小公倍数。

题解:

1.设pi为第i个质数。设两个数A、B,他们可表示为:A = p1^a1 * p2^a2…… ,B = p1^b1 * p2^b2……。

那么他们的最小公倍数为:LCM(A, B) = p1^max(a1,b1) * p2^max(a2, b2)……

2.对n进行质因数分解,得到: n = p1^c1 * p2^c2……。当 LCM(A, B) = n时, ci = max(ai, bi),即要么 ci = ai,要么ci = bi。

3 当ci = ai时, bi的可选择范围为[0,ci]共ci+1种;同理当ci = bi时,ai也有ci+1种选择。但是 (ai=ci,bi=ci)被重复计算了一次,所以对于素数pi,总共有 2*ci+1种选择。所以,当不考虑A、B的大小时,总共有 ∏ 2*ci+1对(A,B),使得 LCM(A, B) = n。

4.再考虑回A、B的大小限制,即A<=B,可知除了A = B = n时,其他的组合都出现了两次,即(A,B)和(B,A)都存在,而要门只需要A<=B的那一个。总的来说,最终有 ((∏ 2*ci+1)+1)/2对 (A,B)满足条件。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[MAXN/];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[]&& prime[j]<MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int fatCnt;
LL factor[][];
int getFactors(LL n)
{
LL tmp = n;
fatCnt = ;
for(int i = ; prime[i]<=tmp/prime[i]; i++)
{
if(tmp%prime[i]==)
{
factor[++fatCnt][] = prime[i];
factor[fatCnt][] = ;
while(tmp%prime[i]==) tmp /= prime[i], factor[fatCnt][]++;
}
}
if(tmp>) factor[++fatCnt][] = tmp, factor[fatCnt][] = ;
} int main()
{
getPrime();
int T, kase = ;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%lld", &n);
getFactors(n);
LL sum = ;
for(int i = ; i<=fatCnt; i++)
sum *= *factor[i][]+; sum = (sum+)/;
printf("Case %d: %lld\n", ++kase, sum);
}
}

LightOJ1236 —— 唯一分解定理 + 最小公倍数的更多相关文章

  1. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

  2. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  3. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  4. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  5. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  6. hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. Uva10791 唯一分解定理模板

    唯一分解定理: Uva10791 题意: 输入整数n,要求至少两个正整数,使得他们的最小公倍数为n,且这些整数的和最小 解法: 首先假设我们知道了一系列数字a1,a2,a3……an,他们的LCM是n, ...

  8. UVA10791-Minimum Sum LCM(唯一分解定理基本应用)

    原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...

  9. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. 《Python基础教程读书笔记》

    第1章 快速构造:基础知识 1.2交互式构造器 不强制分号,一行就是一行.可以加上分号 1.4数字和表达式 加.减.乘.除.整除.求余.指数.取反(-例如-2**2,**的优先级比-大) from _ ...

  2. SVG动画基础篇

    参考资料: http://www.w3school.com.cn/svg/index.asp https://msdn.microsoft.com/zh-cn/library/gg193979  gi ...

  3. java正则过虑字符

    public static void main(String[] args) { String testrString = "{\"abc\" : \"[123 ...

  4. Android自定义Dialog效果

    上面是效果图. 使用方法: NiftyDialogBuilder dialogBuilder=NiftyDialogBuilder.getInstance(this); dialogBuilder . ...

  5. 使用cacheBuilder实现函数防抖

    在接口中出现的相同请求重复且连续发送的情况导致一些业务BUG,需要在接口上实现防抖 使用google的cacheBuilder import com.google.common.cache.Cache ...

  6. -webkit-transform:translate3d(0,0,0)触发GPU加速,让网页动画更流畅

    前段时间,依照美拍的视频效果写了一个效果类似的网页版的动画. 电脑上安装了三种浏览器:IE.Chrome.Firefox.分别作了測试,结果显示Chrome在这方面的渲染效果最差.常常出现卡顿现象.f ...

  7. Hazelcast与MongoDB集成

    Hazelcast与MongoDB集成 作者:chszs,未经博主同意不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs 一.Hazelcast与Mong ...

  8. 怎样高效利用GitHub(非常多资料可供下载)

    正是Github.让社会化编程成为现实.本文尝试谈谈GitHub的文化.技巧与影响. Q1:GitHub是什么 Q2:GitHub风格 Q3: 在GitHub.怎样跟牛人学习 Q4: 享受纯粹的写作与 ...

  9. [LeetCode][Java] Combinations

    题目: Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For ex ...

  10. overflow滚动条样式设置,ie和webkit内核

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...