[bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流)
Description
Input
Output
一个整数表示联盟里所有球队收益之和的最小值。
Sample Input
3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1
Sample Output
43
Hint
Solution
这题费用流裸题好吧。
先假设所有队在接下来的比赛中都会输掉,算出收益。
但是一场比赛应该有且只有一支球队赢得比赛,所以真实收益和我们算出来的收益就会有一些差值,再计算最小的差值即可。
我们可以发现,队伍\(i\)每赢得一场比赛,就会多获得\(C_i * (2 * Win_i + 1) - D_i * (2 * Lost_i - 1)\) 的收益,并且由于赢得越多,\(Win_i\)就会越大,\(Lost_i\)就会越小,所以获得的收益差值就会越来越大。 于是我们可以建立一个最小费用最大流的模型。
- 我们建立一个源点,向所有比赛建一条流量为1,费用为0的边。
- 从比赛向其两支球队建立一条流量为1,费用为0的边。
- 从每支球队向汇点建x(x是该支球队参加的比赛数)条边,每条边流量为1,费用每赢一场的差值。
PS: 这里要注意一点,差值会随着赢的场数增多而增多,所以最小费用最大流一定会先走赢第一场,再走第二场,第三场,等等。。。这是算法正确性的关键。
建好图,然后跑一遍最小费用最大流,加上之前的答案,这题就完了。
Code
#include <cstdio>
#include <queue>
#include <iostream>
using namespace std;
const int maxn = 5e3 + 10, maxm = 1e3 + 10, inf = 1e9 + 7;
int n, m, S, T, cnt;
int w[maxn], l[maxn], a[maxn], b[maxn], x[maxn];
int dis[maxn+maxm], inq[maxn+maxm];
queue<int> q;
struct edge {int u, v, f, c; edge *next, *rev;} e[maxn<<1], *head[maxn+maxm], *from[maxn+maxm];
inline void adde(int u, int v, int flow, int cost) {
e[cnt] = (edge){u, v, flow, cost, head[u], &e[cnt+1]}, head[u] = &e[cnt++];
e[cnt] = (edge){v, u, 0, -cost, head[v], &e[cnt-1]}, head[v] = &e[cnt++];
}
bool spfa() {
while(!q.empty()) q.pop();
for(int i = 1; i <= m + n + 1; i++) dis[i] = inf, inq[i] = 0, from[i] = NULL;
dis[S] = 0, inq[S] = 1; q.push(S);
while(!q.empty()) {
int u = q.front(); q.pop(), inq[u] = 0;
for(edge *k = head[u]; k; k = k->next) if(k->f) {
if(dis[k->v] > dis[u] + k->c) {
dis[k->v] = dis[u] + k->c;
from[k->v] = k;
if(!inq[k->v]) inq[k->v] = 1, q.push(k->v);
}
}
}
return dis[T] != inf;
}
int mcf() {
int res = 0, xx = inf;
for(edge *k = from[T]; k; k = from[k->u]) xx = min(xx, k->f);
for(edge *k = from[T]; k; k = from[k->u])
res += xx * k->c, k->f -= xx, k->rev->f += xx;
return res;
}
int main() {
int u, v;
scanf("%d%d", &n, &m);S = 0, T = n + m + 1;
for(int i = 1; i <= n; i++) scanf("%d%d%d%d", w+i, l+i, a+i, b+i);
for(int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
l[u]++, l[v]++;
x[u]++, x[v]++;
adde(S, n+i, 1, 0);
adde(n + i, u, 1, 0);
adde(n + i, v, 1, 0);
}
int ans = 0;
for(int i = 1; i <= n; i++) {
ans += w[i] * w[i] * a[i] + l[i] * l[i] * b[i];
for(int j = 0; j < x[i]; j++)
adde(i, T, 1, a[i]*(2*w[i]+1) - b[i] * (2 * l[i] - 1)),
w[i]++, l[i]--;
}
while(spfa()) ans += mcf();
printf("%d\n", ans);
return 0;
}
[bzoj 1449] 球队收益(费用流)的更多相关文章
- BZOJ 1449 JSOI2009 球队收益 费用流
题目大意:给定nn支球队.第ii支球队已经赢了winiwin_i场.输了loseilose_i场,接下来还有mm场比赛.每一个球队终于的收益为Ci∗x2i+Di∗y2iC_i*x_i^2+D_i*y_ ...
- BZOJ 1449 球队收益(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1449 题意: 思路:首先,我们假设后面的M场比赛两方都是输的,即初始时的lose[i]再 ...
- 【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 题解 费用流 由于存在一 ...
- 【BZOJ1449&&2895】球队预算 [费用流]
球队预算 Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 在一个篮球联赛里,有n支球队, 球 ...
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
- BZOJ 1070 修车 【费用流】
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...
- BZOJ 1930 吃豆豆(费用流)
首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...
随机推荐
- Cesium 显示CZML数据
转自文章 Cesium随笔(5)CZML介绍(介个文章是转的嘿嘿) 通过czml可以在cesium上实现非常棒的动态效果 CZML的结构 CZML是一种用来描述动态场景的JSON架构的语言,主 ...
- Hibernate注解详解
一.实体Bean 每个持久化POJO类都是一个实体Bean, 通过在类的定义中使用 @Entity 注解来进行声明. 声明实体Bean @Entitypublic class Flightimplem ...
- mysql读写分离的三种实现方式
1 程序修改mysql操作类可以参考PHP实现的Mysql读写分离,阿权开始的本项目,以php程序解决此需求.优点:直接和数据库通信,简单快捷的读写分离和随机的方式实现的负载均衡,权限独立分配缺点:自 ...
- sshpass结合ssh和scp可以自动完成密码登录,无需手动输入密码
使用方法: 1.sshpass -p 123456 ssh admin@1.1.1.1 "touch file" 远程创建文件file 2.sshpass -p 123456 s ...
- [Algorithom] Stack Data Structure in JavaScript
A stack is a collection of items that obeys the principle of "last in, first out". Like a ...
- docker 容器 日志占用空间过大问题处理
docker 容器 日志占用空间过大问题处理 # 2017 10 09 优化docker 运行产生的日志 path=/var/lib/docker/containers/ cd $path for f ...
- Odoo10尝鲜: 采购协议
Odoo10 对 call for bid 进行了 改进, 作为 '采购协议' 进入 采购, 选择 'Purchase agreement' 在 agreement 列表 建立新的 协议 选择 协议类 ...
- 云舒网络译:Rancher1.0正式版公布
编者注: Rancher Labs是一家容器技术基础设施提供商,总部位于美国硅谷,Rancher是一个高效易用的企业容器云平台. 云舒网络 http://www.cloudsoar.com/为Ranc ...
- AMD移动FP5平台时序解释
好文章推荐:https://wenku.baidu.com/view/199379576137ee06eef91828.html AMD(FP5封装)时序全解. 由于刚开始接触AMD移动平台,难免有错 ...
- vs 编译错误 The name 'InitializeComponent' does not exist in the current context in WPF application
1:文件命名空间的问题 xaml文件和model.cs文件的命名空间 2:csproj 那么它究竟是给谁用的呢?那是给开发工具用的,例如我们在熟悉不过的Visual Studio,以及大家可以没有接触 ...