P1880 石子合并
P1880 石子合并
题目描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
4
4 5 9 4
43
54
分析
区间dp,不过是圆形的,把他们分成一个n*2的区间就好,然后进行区间dp ,对dp1不能全设成最大值,不然没法取min。
最后要在所有区间长度为n的区间中取出最大值与最小值。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = ;
int dp1[MAXN][MAXN],dp2[MAXN][MAXN],a[MAXN],sum[MAXN];
int n,ans1 = ,ans2 = ; int main()
{
scanf("%d",&n);
for (int i=; i<=n*; ++i)
for (int j=i+; j<=n*; ++j)
dp1[i][j] = 1e8; //最小值
memset(dp2,,sizeof(dp2)); //最大值
for (int i=; i<=n; ++i)
{
scanf("%d",&a[i]);
a[i+n] = a[i];
}
for (int i=; i<=n*; ++i)
sum[i] = sum[i-]+a[i];
for (int i=*n-; i>=; --i)//从倒数第二个开始枚举左端点
for (int j=i+; j<=*n; ++j)//枚举右端点
for (int k=i; k<=j-; ++k)//枚举中间点
dp1[i][j] = min(dp1[i][j],dp1[i][k]+dp1[k+][j]+sum[j]-sum[i-]),
dp2[i][j] = max(dp2[i][j],dp2[i][k]+dp2[k+][j]+sum[j]-sum[i-]);
for (int i=; i<=n; ++i)
{
ans1 = min(ans1,dp1[i][i+n-]);
ans2 = max(ans2,dp2[i][i+n-]);
}
printf("%d\n%d",ans1,ans2);
return ;
}
P1880 石子合并的更多相关文章
- 【洛谷】P1880 石子合并
P1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计 ...
- 经典DP 洛谷p1880 石子合并
https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- luogu P1880 石子合并
题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- 洛谷 P1880 石子合并
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- P1880石子合并
1995年的noi区间dp题,这道题AC耗时达到了数月. 有一道题叫做果子合并,也是求合并的最小花费,但是那个题是可以随便合并两堆,但是这个题只能合并相邻的两堆,并且是一个环.对于环的问题,我们一般可 ...
- 【luogu】 P1880 石子合并
原题原题原题原题原题 先贴上错误代码... ↓错误代码↓ #include <iostream> #include <cstdio> #include <cstring& ...
- 洛谷P1880 石子合并
经典水题....... 断环为链长度乘二,求前缀和区间DP. #include <cstdio> #include <cstring> #include <algorit ...
随机推荐
- 初始socket
一.客户端/服务器架构 1.C/S结构,即Client/Server(客户端/服务器)结构 2.我们在互联网中处处可见c/s架构比如说浏览器,qq,lol,视频软件... 3.我们学习socket就是 ...
- Django的Serializers的使用
Serializer 在这里通过一个验证用户身份的例子说明rest_framework中serializer.Serialize的使用. 编写serializer Serializer的使用不需要依赖 ...
- Catch the moments of your life. Catch them while you're young and quick.
Catch the moments of your life. Catch them while you're young and quick.趁你还年轻利落,把握住生活中的美好瞬间吧!
- Android中渐变图片失真的解决方案
在android开发(尤其是android游戏开发)中有一个很严重的问题就是带有渐变效果的png图片会出现严重的banding(色带),鉴于这种情况,有几种可行的解决方法: 1.如果Activit ...
- 【Linux/Ubuntu学习 10】unbuntu 下 eclipse 中文乱码的解决
wangdd@wdd-pc:~$ gedit /var/lib/locales/supported.d/local 添加: zh_CN.GBK GBK zh_CN.GB2312 GB2312 终端执行 ...
- 【转】如何在Git中撤销一切
翻译:李伟 审校:张帆译自:Github 任何一个版本控制系统中,最有用的特性之一莫过于 “撤销(undo)”操作.在Git中,“撤销”有很多种含义. 当你完成了一次新的提交(commit),Git会 ...
- Nagios-4.1.1 (OpenLogic CentOS 7.2)
平台: CentOS 类型: 虚拟机镜像 软件包: apache2.4.6 nagios 4.1.1 php5.4.16 devops monitoring nagios open-source ph ...
- 第2章 核心C#
1. 变量 1.1 变量需要遵循的规则: 变量必须初始化 初始化器不能为空 初始化器必须放在表达式中 不能把初始化器设置为一个对象,除非在初始化器中创建了一个新对象 1.2 变量的作用域 只要类在某个 ...
- jQuery-名称符号$与其他库函数冲突
1.通过全名替代简写的方式来使用 jQuery jQuery("button").click(function(){ jQuery("p").text(&quo ...
- Ubuntu 16.04 开启休眠功能
因为休眠功能在部分计算机无法正常工作,所以Ubuntu默认是不开启休眠功能. 要想开启休眠功能先进行如下测试: 1.先检查是否有交换分区(swap),如果有确认交换分区至少和实际可用内存一样大. 2. ...