Poj1142 Smith Numbers

Smith Numbers

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 13854 Accepted: 4716

Description

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith’s telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774

0

Sample Output

4937775

Source

Mid-Central European Regional Contest 2000

题意 大于n满足你的各个位数之和等于质因子各位数之和。

题解 暴力过。

#include<cstdio>
int fun(long long a)
{
int sum=0;
while(a>0)
{
sum+=a%10;
a/=10;
}
return sum;
} bool prime(long long a)
{
int flag=1;
if (a==1) return false;
if(a==2) return true;
for(int i=2;i*i<a+1;i++)
if(a%i==0)
{
flag=0;
break;
}
if(flag)
return true;
else
return false;
} int cnt(long long a)
{
if(prime(a))
return fun(a);
else
{
for(int i=2;i*i<a+1;i++)
{
if(a%i==0)
return cnt(i)+cnt(a/i);
}
}
} int main()
{
long long a;
while(scanf("%lld",&a)!=EOF&&a)
{
while(a++)
{
int sum=fun(a); if(!prime(a)&&fun(a)==cnt(a))
break; }
printf("%lld\n",a); }
return 0;
}

这时间倒也不是很多,79ms

poj1142 Smith Numbers的更多相关文章

  1. POJ1142 Smith Numbers 暴力+分解质因子

    题意:题目定义了一个史密斯数,这个数的定义是:一个合数的各个位置上加起来的和等于它的素因数所有位置上的数字加起来的和.比如: 4937775=3∗5∗5∗658374+9+3+7+7+7+5=3+5+ ...

  2. poj1142.Smith Number(数学推导)

    Smith Number Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 825  Solved: 366 Description While skimm ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  5. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  6. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  7. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

随机推荐

  1. ajax post方式表单提交的注意事项。

    当我们创建一个异步对象XMLHttpRequest同时post方式向后台传输数据的时候. 我们要设置异步对象的xhr.setRequestHeader成员的值为 XMLHttpRequest.setR ...

  2. JMeter测试TCP服务器遇到的一个奇怪问题

    今天工作需要测TCP服务器的压力,因为tsung测试TCP需要写的脚本实在头大,于是换了JMETER来搞压力测试.在实际测试的过程中,遇到了一个很奇怪的问题,就是发了数据包以后,JMeter不停地报5 ...

  3. MVC与MVVM的关系

    什么是MVC? M(Model数据层) 职能单一,只负责操作数据库,执行对于的 Sql 语句,进行数据的CRUD C: create 增加 R: Read 读取 U: update 修改 D: Del ...

  4. 移动端,点击a标签链接的pdf报错 Resource interpreted as Document but transferred with MIME type application/pdf

    源码: <a href="11.pdf" class="actcont_a fl report_a" style="display: block ...

  5. 如何在VS中快速导入新的源码以及文件夹

    参考链接:http://www.cjjjs.com/paper/xmkf/201641716212844.aspx 在visual studio 2013中尝试发现的问题:原文中“显示所有文件 ”的操 ...

  6. uLua学习之创建游戏对象(二)

    前言 上节,刚刚说到创建一个“HelloWorld”程序,大家想必都对uLua有所了解了,现在我们一步步地深入学习.在有关uLua的介绍中(在这里),我们可以发现它使用的框架是Lua + LuaJIT ...

  7. 大数四则运算java(转)

    // 大数的四则运算 #include <iostream> #include <string> #include <algorithm> using namesp ...

  8. python3基础11(正则表达式及re模块)

    #生成re对象 compile# 之后再期调用 match search 返回匹配到的字符串# findall 返回匹配结果的列表#如果要对匹配的结果进行分组,可加(),并可通过\数字 去应用

  9. sql server 索引总结一

    一.存储结构 在SQL Server中,有许多不同的可用排列规则选项. 二进制:按字符的数字表示形式排序(ASCII码中,用数字32表示空格,用68表示字母"D").因为所有内容都 ...

  10. sql server 2012不能全部用到CPU的逻辑核心数的问题

    最近在工作中遇到了,sql server 2012 不能把CPU 的核心全部用到的问题.通过分析工具看到 总共CPU核心有72核,但sql 只能用到40核心,想信也有很多人遇到这问题,那么今天这节就先 ...