【BZOJ4561】[JLoi2016]圆的异或并 扫描线
【BZOJ4561】[JLoi2016]圆的异或并
Description
在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面积并。异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑。
Input
第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的圆。保证|x|,|y|,≤10^8,r>0,N<=200000
Output
仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。
Sample Input
0 0 1
0 0 2
Sample Output
题解:首先有一个非常重要的性质,由于所有圆不相交,所以任何时候所有圆的相对位置是不变的。
然后,我们对将个圆拆成加入和删除两个事件,左边加入右边删除。加入时相当于在set中加入了上下两个圆弧。然后用扫描线从左到右扫描,当加入一个圆时,在set中找到它外面的一层圆,则当前圆的符号=-外层圆的符号。特别地,如果我们在当前圆的上面找到了一个下半圆,则说明它和那个圆的关系是并列的,所以符号相同。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <cmath>
using namespace std;
const int maxn=200010;
typedef long long ll;
int n,now;
int x[maxn],y[maxn],r[maxn],f[maxn];
ll ans;
struct edgex
{
int v,k;
edgex() {}
edgex(int a,int b){v=a,k=b;} }p[maxn<<1];
bool operator < (edgex a,edgex b)
{
int pa=x[a.v]+a.k*r[a.v],pb=x[b.v]+b.k*r[b.v];
return pa<pb;
}
struct edgey
{
int v,k;
edgey() {}
edgey(int a,int b){v=a,k=b;}
double gety()
{
return y[v]+k*sqrt(1.0*r[v]*r[v]-1.0*(x[v]-now)*(x[v]-now));
}
};
bool operator < (edgey a,edgey b)
{
double ya=a.gety(),yb=b.gety();
if(fabs(ya-yb)<1e-7) return a.k<b.k;
return ya<yb;
}
set<edgey> s;
set<edgey>::iterator it;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i;
for(i=1;i<=n;i++) x[i]=rd(),y[i]=rd(),r[i]=rd(),p[i]=edgex(i,-1),p[i+n]=edgex(i,1);
sort(p+1,p+2*n+1);
for(i=1;i<=2*n;i++)
{
if(p[i].k==-1)
{
edgey t1(p[i].v,-1),t2(p[i].v,1);
it=s.upper_bound(t2);
if(it!=s.end()) f[p[i].v]=-f[(*it).v];
else f[p[i].v]=1;
s.insert(t1),s.insert(t2);
}
else s.erase(edgey(p[i].v,-1)),s.erase(edgey(p[i].v,1));
}
for(i=1;i<=n;i++) ans+=(ll)f[i]*r[i]*r[i];
printf("%lld",ans);
return 0;
}
【BZOJ4561】[JLoi2016]圆的异或并 扫描线的更多相关文章
- [BZOJ4561][JLOI2016]圆的异或并(扫描线)
考虑任何一条垂直于x轴的直线,由于圆不交,所以这条直线上的圆弧构成形似括号序列的样子,且直线移动时圆之间的相对位置不变. 将每个圆拆成两边,左端加右端删.每次加圆时考虑它外面最内层的括号属于谁.用se ...
- BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*
BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...
- bzoj4561: [JLoi2016]圆的异或并 圆的扫描线
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...
- bzoj4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线
扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...
- BZOJ4561 JLOI2016圆的异或并(扫描线+平衡树)
考虑一条扫描线从左到右扫过这些圆.观察某一时刻直线与这些圆的交点,可以发现构成一个类似括号序列的东西,括号的包含关系与圆的包含关系是相同的.并且当扫描线逐渐移动时,括号间的相对顺序不变.于是考虑用se ...
- BZOJ4561: [JLoi2016]圆的异或并 计算几何+treap
因为本题保证两圆之间只有相包含或相离(不用担心两圆重合 因为我没有RE) 所以每个圆之间的相对位置是确定的 也就是可以按极角排序的, 所以可以按横坐标排序后 扫描同时用treap维护加圆删圆(即遇到 ...
- BZOJ 4561: [JLoi2016]圆的异或并 扫描线 + set
看题解看了半天...... Code: #include<bits/stdc++.h> #define maxn 200010 #define ll long long using nam ...
- 【BZOJ-4561】圆的异或并 set + 扫描线
4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 254 Solved: 118[Submit][Statu ...
随机推荐
- Linux System Programming 学习笔记(十) 信号
1. 信号是软中断,提供处理异步事件的机制 异步事件可以是来源于系统外部(例如用户输入Ctrl-C)也可以来源于系统内(例如除0) 内核使用以下三种方法之一来处理信号: (1) 忽略该信号.SIG ...
- SHUoj 字符串进制转换
字符串进制转换 发布时间: 2017年7月9日 18:17 最后更新: 2017年7月9日 21:17 时间限制: 1000ms 内存限制: 128M 描述 Claire Redfield ...
- 移动端H5多平台分享实践--摘抄
作者:大漠 日期:2018-01-20 点击:628 mobile 编辑推荐: 掘金是一个高质量的技术社区,从 CSS 到 Vue.js,性能优化到开源类库,让你不错过前端开发的每一个技术干货. 点击 ...
- 模仿手机qq空间头部向上滚动颜色加深
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- configure.ac:3: error: Autoconf version 2.68 or higher is required
configure.ac:3: error: Autoconf version 2.68 or higher is required 参考博客:https://blog.csdn.net/pretty ...
- CocoaPods | iOS详细使用说明
一:介绍 在iOS开发中,经常会使用到第三方库,[CocoaPods](https://github.com/CocoaPods/CocoaPods)可以用来方便的统一管理这些第三方库. 下面就和大家 ...
- Codeforces 919 A. Supermarket
这场cf有点意思,hack场,C题等于1的特判hack很多人(我hack成功3个人,上分了,哈哈哈,咳咳...) D题好像是树形dp,E题好像是中国剩余定理,F题好像还是dp,具体的不清楚,最近dp的 ...
- Unity3D Shader 入门之简单案例的实现(通过法线实现颜色变化)
在没有接触Unity3D Shader 之前,总感觉shader特别神奇,因为听说是对渲染流水线进行编程,就是对GPU进行编程.听着特别高大上.这不,最近刚刚接触Shader,学了几个小案例,然后本 ...
- Truck History(最小生成树)
poj——Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27703 Accepted: 10 ...
- UVA 11090 Going in Cycle!! SPFA判断负环+二分
原题链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...