【BZOJ4407】于神之怒加强版 莫比乌斯反演
【BZOJ4407】于神之怒加强版
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
题解:如何快速推出线性筛的递推式呢?——打表。
发现f(D)长得跟$\varphi(D)$差不多?所以递推式也差不多
$f(i*pj)=\begin{cases}& f(i)*(pj^k-1) & i\%pj!=0 \\ & f(i)*pj^k & i\%pj==0\end{cases}$
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=5000000;
int T,k,num;
int pri[N];
ll f[N+10],sf[N+10],pk[N],ans;
bool np[N+10];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
void init()
{
int i,j;
f[1]=sf[1]=1;
for(i=2;i<=N;i++)
{
if(!np[i]) pri[++num]=i,pk[num]=pm(i,k),f[i]=pk[num]-1;
sf[i]=sf[i-1]+f[i];
for(j=1;j<=num&&i*pri[j]<=N;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pk[j]%mod;
break;
}
f[i*pri[j]]=f[i]*(pk[j]-1)%mod;
}
}
}
void work()
{
int n,m,i,last;
ans=0;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ans+(sf[last]-sf[i-1])*(n/i)%mod*(m/i)%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
int main()
{
scanf("%d%d",&T,&k);
init();
while(T--) work();
return 0;
}
【BZOJ4407】于神之怒加强版 莫比乌斯反演的更多相关文章
- BZOJ4407 于神之怒加强版 - 莫比乌斯反演
题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- luogu4449 于神之怒加强版(莫比乌斯反演)
link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...
随机推荐
- C语言扩展题
1.使用cmake来创建c语言工程 2.使用gcc来编译源代码 3.下载redis,并且编译运行redis(注:redis目前是c语言编写的,而且是主要是linux平台,在windows平台编译比较麻 ...
- UVa11542 Square
/*by SilverN*/ #include<iostream> #include<algorithm> #include<cstring> #include&l ...
- (5)DataSet
DataTable赋值给DataSet DataSet ds = new DataSet(); DataTable dt1 = new DataTable(); DataTable dt2 = new ...
- 洛谷——P1825 [USACO11OPEN]玉米田迷宫Corn Maze
P1825 [USACO11OPEN]玉米田迷宫Corn Maze 题目描述 This past fall, Farmer John took the cows to visit a corn maz ...
- hdu6217(数学)
题意: 你需要输出在16进制下,π的第n位的数字 分析: 既然要求第n位的数字,我们不妨把原来的数字乘上$16^{n-1}$,我们要求的就是这个和式的小数部分的最高位 我们可以用double暴力求出小 ...
- 搭建高可用服务注册中心-Spring Cloud学习第一天(非原创)
文章大纲 一.Spring Cloud基础知识介绍二.创建单一的服务注册中心三.创建一个服务提供者四.搭建高可用服务注册中心五.项目源码与参考资料下载六.参考文章 一.Spring Cloud基础 ...
- MAC终端命令行整理
参考:http://www.jianshu.com/p/3291de46f3ff 目录操作 命令名 说明 举例 cd 切换到指定目录 cd test ls 查看这个目录下的所有文件 ls /Users ...
- 在Dev GridControl中添加颜色可变的ProgressBar z
在使用DevExpress,GridControl自带的ProgressBarControl的时候 由于无法通过BackColor/ForeColor来改变进度条的颜色所以很多特效是实现不了的.如下面 ...
- hive界面工具SQL Developer的安装;使用sql developer连接hive;使用sql developer连接mysql
需要oracle帐号登录后下载 1.下载: http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/inde ...
- iOS集成百度地图方法步骤
前言:app中的导航功能越来越流行,现在我自己做的项目中也有此需求,做过了后记录下笔记. 由于源代码保密所以这里仅仅提供demo,下面是效果图 一:iOS地图SDK 1.打开 百度地图api链接 i ...