题目

图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨。

这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多。

小D虽然图论很弱,但是也知道无向图最大独立集是npc,但是小C很仁慈的给了一个很有特点的图: 图中任何一条边属于且仅属于一个简单环,图中没有重边和自环。小C说这样就会比较水了。

小D觉得这个题目很有趣,就交给你了,相信你一定可以解出来的。

输入格式

第一行,两个数n, m,表示图的点数和边数。

第二~m+1行,每行两个数x,y,表示x与y之间有一条无向边。

输出格式

输出这个图的最大独立集。

输入样例

5 6

1 2

2 3

3 1

3 4

4 5

3 5

输出样例

2

提示

100% n <=50000, m<=60000

题解

假设这是一棵树,设\(f[i][0]\)表示\(i\)节点为根,不选\(i\)的最大数量,\(f[i][1]\)表示选择\(i\)的最大数量

转移就很简单了,不选\(i\),儿子可以选可以不选,选了\(i\),儿子必须选

如果是仙人掌的话,就先忽略环上的点,然后单独考虑环的影响传递到最高点

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 50005,maxm = 120005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[maxm];
void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int f[maxn][2],fa[maxn],dfn[maxn],low[maxn],cnt;
int c[maxn],ci,g[maxn][2];
void DP(int u,int rt){
ci = 0; int ans1,ans2;
for (int i = u; i != rt; i = fa[i]) c[++ci] = i;
g[u][0] = f[u][0]; g[u][1] = 0;
for (int i = 2; i <= ci; i++){
u = c[i];
if (i == 2) g[u][0] = f[u][0] + g[c[i - 1]][0];
else g[u][0] = f[u][0] + max(g[c[i - 1]][0],g[c[i - 1]][1]);
g[u][1] = f[u][1] + g[c[i - 1]][0];
}
ans1 = g[c[ci]][0];
g[c[1]][0] = f[c[1]][0]; g[c[1]][1] = f[c[1]][1];
for (int i = 2; i <= ci; i++){
u = c[i];
g[u][0] = f[u][0] + max(g[c[i - 1]][0],g[c[i - 1]][1]);
g[u][1] = f[u][1] + g[c[i - 1]][0];
}
ans2 = max(g[c[ci]][1],g[c[ci]][0]);
f[rt][1] += ans1;
f[rt][0] += ans2;
}
void dfs(int u){
dfn[u] = low[u] = ++cnt;
f[u][1] = 1;
Redge(u) if ((to = ed[k].to) != fa[u]){
if (!dfn[to]){
fa[to] = u;
dfs(to);
low[u] = min(low[u],low[to]);
}else low[u] = min(low[u],dfn[to]);
if (low[to] > dfn[u]){
f[u][0] += max(f[to][0],f[to][1]);
f[u][1] += f[to][0];
}
}
Redge(u) if (dfn[to = ed[k].to] > dfn[u] && fa[to] != u)
DP(to,u);
}
int main(){
n = read(); m = read();
while (m--) build(read(),read());
int ans = 0;
REP(i,n) if (!dfn[i]){
dfs(i);
ans += max(f[i][0],f[i][1]);
}
printf("%d\n",ans);
return 0;
}

BZOJ4316 小C的独立集 【仙人掌】的更多相关文章

  1. [BZOJ4316]小C的独立集 仙人掌?

    题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...

  2. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  3. BZOJ 4316: 小C的独立集 仙人掌 + 树形DP

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...

  4. 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)

    传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+ ...

  5. bzoj4316小C的独立集(dfs树/仙人掌+DP)

    本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...

  6. [BZOJ4316]小C的独立集(圆方树DP)

    题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...

  7. bzoj4316: 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  8. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

  9. 【题解】Bzoj4316小C的独立集

    决定要开始学习圆方树 & 仙人掌相关姿势.加油~~ 其实感觉仙人掌本质上还是一棵树,长得也还挺优美的.很多的想法都可以往树的方面上靠,再针对仙人掌的特性做出改进.这题首先如果是在树上的话那么实 ...

随机推荐

  1. Oracle RAC Brain Split Resolution

    大约是一周前,一位资深的Oracle工程师向我和客户介绍RAC中脑裂的处理过程,据他介绍脑裂发生时通过各节点对voting disk(投票磁盘)的抢夺,那些争抢到(n/2+1)数量voting dis ...

  2. /^/m|/$/m|\b|\B|$&|$`|$'|变量捕获|()?|(?:pattern)|(?<LABEL>PATTERN)|$+{LABEL}|(|)|\g{LABEL}

    #!/usr/bin/perl use strict; use warnings; $_=' $$ oinn &&& ninq kdownc aninp kkkk'; if ( ...

  3. Windows平台下MySQL常用操作与命令

    Windows平台下MySQL常用操作与命令 Windows平台下MySQL常用操作与命令,学习mysql的朋友可以参考下. 1.导出整个数据库 mysqldump -u 用户名 -p --defau ...

  4. cocos2dx 3.x lua 网络加载并且保存资源(unix、linux)

    #ifndef __DazzleParkour__TextLoader__ #define __DazzleParkour__TextLoader__ #include <stdio.h> ...

  5. OC和C++的混用2

    苹果的Objective-C编译器允许用户在同一个源文件里自由地混合使用C++和Objective-C,混编后的语言叫Objective-C++.有了它,你就可以在Objective-C应用程序中使用 ...

  6. 如何用纯 CSS 和 D3 创作一艘遨游太空的宇宙飞船

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/oMqNmv 可交互视频 ...

  7. H5 JS判断客户端是否是iOS或者Android手机移动端

    <script type="text/javascript"> var u = navigator.userAgent; || u.indexOf(; //androi ...

  8. PHP做ERP, CRM, CMS系统需要注意哪些地方

    php作为二次开发弱类型语言, 可读性, 可视度都是比较高的. 在很多人眼里, 也许php只能做一些web应用开发, 比如某个公司的网站, 某个公司的网站后台, 其实,我可以告诉大家, php不比任何 ...

  9. 《Java并发编程实战》读书笔记一 -- 简介

    <Java并发编程实战>读书笔记一 -- 简介 并发的历史 并发的历史,也是人类利用有限的资源去提高生产效率的一个的例子. 设想现在有台计算机,这台计算机具有以下的资源: 单核CPU一个 ...

  10. 1、python-初探

    语言包括编译型语言和解释型语言编译型:全部翻译,再执行:c.c++解释型:边执行边翻译:python.php.java.c#.perl.ruby.javascript 一.系统位数32位系统内存的最大 ...