题目描述

给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形。同时还支持单点修改。

输入

第一行两个整数n、q表示树的点数和操作数
第二行n个整数表示n个点的点权
以下n-1行,每行2个整数a、b,表示a是b的父亲(以1为根的情况下)
以下q行,每行3个整数t、a、b
若t=0,则询问(a,b)
若t=1,则将点a的点权修改为b

输出

对每个询问输出一行表示答案,“Y”表示有解,“N”表示无解。

样例输入

5 5
1 2 3 4 5
1 2
2 3
3 4
1 5
0 1 3
0 4 5
1 1 4
0 2 5
0 2 3

样例输出

N
Y
Y
N


题解

朴素LCA+暴力

一开始想到了一个$O(n\log^3n)$的数据结构算法,然后发现自己太naive了= =

由于点权是int范围内的,所以如果想让尽量多的边不构成三角形,那么它们的边权应该为1、1、2、3、5、8、...

这显然是斐波那契数列,而斐波那契数列是指数增长的,到第50项左右就爆int了。

所以可以直接拿出两个点之间的路径,当拿出的超过50个时直接判定能构成三角形,否则排序,暴力。

时间复杂度为$O(q·50·\log 50)$

#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int w[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , deep[N] , a[100] , tot;
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
bool judge(int x , int y)
{
int i;
tot = 0;
if(deep[x] < deep[y]) swap(x , y);
while(deep[x] > deep[y])
{
a[++tot] = w[x] , x = fa[x];
if(tot > 50) return 1;
}
while(x != y)
{
a[++tot] = w[x] , a[++tot] = w[y] , x = fa[x] , y = fa[y];
if(tot > 50) return 1;
}
a[++tot] = w[x] , sort(a + 1 , a + tot + 1);
for(i = 3 ; i <= tot ; i ++ )
if(a[i] - a[i - 1] < a[i - 2])
return 1;
return 0;
}
int main()
{
int n , m , i , opt , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(1);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt) w[x] = y;
else if(judge(x , y)) puts("Y");
else puts("N");
}
return 0;
}

【bzoj3251】树上三角形 朴素LCA+暴力的更多相关文章

  1. BZOJ3251:树上三角形(乱搞)

    Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. Input 第一行两个整数n ...

  2. bzoj3251: 树上三角形(思维题)

    神tmWA了8发调了20min才发现输出没回车T T... 首先考虑一段什么样的序列才会是N... 显然最长的形式就是斐波那契,前两数之和等于第三数之和,这样就无法组成三角形并且序列最长.可以发现在i ...

  3. BZOJ 3251 树上三角形:LCA【构成三角形的结论】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3251 题意: 给你一棵树,n个节点,每个点的权值为w[i]. 接下来有m个形如(p,a,b ...

  4. BZOJ3251 : 树上三角形

    BZOJ AC1000题纪念~~~ 将x到y路径上的点权从小到大排序 如果不存在b[i]使得b[i]+b[i+1]>b[i+2]则无解 此时b数列增长速度快于斐波那契数列,当达到50项时就会超过 ...

  5. 树上三角形 BZOJ3251

    分析: 模拟赛T3,其实很水,当时出于某些原因,没有去写这道题... len>46必定有解 为了满足不是三角形,那么斐波那契数列是最优选择,而斐波那契数列的第46项超过了2^31-1,所以超过4 ...

  6. 【BZOJ3251】树上三角形 暴力

    [BZOJ3251]树上三角形 Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改 ...

  7. HDU 1524 树上无环博弈 暴力SG

    一个拓扑结构的图,给定n个棋的位置,每次可以沿边走,不能操作者输. 已经给出了拓扑图了,对于每个棋子找一遍SG最后SG和就行了. /** @Date : 2017-10-13 20:08:45 * @ ...

  8. 【bzoj4668】冷战 并查集按秩合并+朴素LCA

    题目描述 1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕. 美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争 ...

  9. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

随机推荐

  1. cdoj 414 八数码 (双向bfs+康拓展开,A*)

    一道关乎人生完整的问题. DBFS的优越:避免了结点膨胀太多. 假设一个状态结点可以扩展m个子结点,为了简单起见,假设每个结点的扩展都是相互独立的. 分析:起始状态结点数为1,每加深一层,结点数An ...

  2. python_93_面向对象实例2

    class Role: def __init__(self,name,role,weapon,life_value=100,money=15000): '构造函数:实例化时做一些类的初始化工作' se ...

  3. centos7-httpd虚拟主机

    Apache虚拟主机: 一台WEB服务器发布单个网站会非常浪费资源,所以一台WEB服务器上会发布多个网站, 在一台服务器上发布多网站,也称之为部署多个虚拟主机,WEB虚拟主机配置方法有三种: 基于单I ...

  4. 队列的add与offer的区别

    两个方法都表示往队列里添加元素 但是当出现异常时,add方法抛出异常 而offer则返回的是false,就是啥事也没有,也不抛异常,也没有添加成功!

  5. java基础—对象转型

    一.对象转型介绍 对象转型分为两种:一种叫向上转型(父类对象的引用或者叫基类对象的引用指向子类对象,这就是向上转型),另一种叫向下转型.转型的意思是:如把float类型转成int类型,把double类 ...

  6. 反射中 invoke方法 getMethod方法 getClass()方法

    package com.swift; import java.util.*; import java.lang.reflect.*; public class ReflectDemo { public ...

  7. iOS开发中的Self-Manager 模式

    Self-Manager 源于我们团队内部的黑话,“诶?你刚去的创业公司有几个 iOS 开发啊?” “就我一个” “靠,你这是 Self-Manager 啊” 最近,这个思路被我们当做了一种设计模式, ...

  8. 经常用到的js函数

    //获取样式 function getStyle(obj,attr){ if(obj.currentStyle){ return obj.currentStyle[attr]; }else{ retu ...

  9. 如何用纯 CSS 和 D3 创作一只扭动的蠕虫

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QBQJMg 可交互视频 ...

  10. 【android】【android studio】修改emulator的本地化环境

    Changing the emulator locale from the adb shell To change the locale in the emulator by using the ad ...