解题报告 之 HDU5288 OO' s Sequence


Description

OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy a imod a j=0,now OO want to know

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

rev=2.4-beta-2" alt="" style="">

 

Input

There are multiple test cases. Please process till EOF. 

In each test case: 

First line: an integer n(n<=10^5) indicating the size of array 

Second line:contain n numbers a i(0<a i<=10000) 
 

Output

For each tests: ouput a line contain a number ans.
 

Sample Input

5
1 2 3 4 5
 

Sample Output

23
 

题目大意:给你n个数的序列(当中数可能反复)。对于每个子区间,求该子区间中没有因子也在该子区间的的个数。再把全部子区间内这种数的数量求和。比方例子中的 1
2 3 4 5,那么子区间[1,2,3]中这种数就是1。2,3三个。然后对于子区间2 3 4,这种数就仅仅有两个,由于4有因子2也在该子区间中。


分析:非常自然的想法是遍历每个子区间,再统计有多少个数,再加起来。但这样做是不可行的。这样就中了题目的陷阱,被那个公式给误导了,所以我们必需要跳出惯性思维。将关注的单位从子区间变到每个数。


考虑一个数。它能被统计多少次取决于什么呢?取决于它在多少个子区间内可以做到没有因子。所以我们非常自然的去关注离他近期的左右两个因子。由于这两个因子范围以外的子区间都没有卵用。

。比方5
5 2 3 3 4 3 2 5 5。那么对于4来说,我们找到左右两个因子2之后,就能够发现从5開始和结束的子区间都不会算到4。由于有2在那里杵着。


至此,问题转化为,找到每个数左右离它近期的因子。然后就行非常easy的知道这个数可以被统计多少次了。那么怎么去寻找左右两边的因子呢?有两种做法,首先介绍我的方法。注意到可能的数字一共仅仅有1e4个。先从左到右扫描依次更新两个数据,一是这个数最后出现的位置,用loc数组表示,还有一个是这个数左边离它近期的因子的位置则用该数的每个因子(遍历),求全部因子中最后出现的最大值。

然后再从右到左扫描,原理一样的。完毕之后再遍历序列,对于每个数求它被统计多少次就可以。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
const int MAXN = 1e5 + 10;
const int MAXM = 1e4 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7; int nums[MAXN]; //序列中的数
int lb[MAXN], rb[MAXN]; //序列中的数左右离他近期的因子的位置
int latest[MAXM];//某个数字最后出现的位置 int main()
{
int n;
while(scanf( "%d", &n ) == 1)
{
memset( lb, 0, sizeof lb );
memset( rb, INF, sizeof rb );
//reset for(int i = 1; i <= n; i++)
{
scanf( "%d", &nums[i] );
}//input for(int i = 0; i < MAXM; i++) latest[i] = 0; for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= sqrt( nums[i] ); j++)
{//遍历每一个因子
if(nums[i] % j == 0)
{
lb[i] = max( lb[i], latest[j] );
lb[i] = max( lb[i], latest[nums[i] / j] );
}
}
latest[nums[i]] = i; //更新位置。注意要遍历后更新,由于本身也是自己的因子 }// tackle 1 for(int i = 0; i < MAXM; i++) latest[i] = n + 1;
for(int i = n; i >= 1; i--)
{
for(int j = 1; j <= sqrt( nums[i] ); j++)
{
if(nums[i] % j == 0)
{
rb[i] = min( rb[i], latest[j] );
rb[i] = min( rb[i], latest[nums[i] / j] );
}
}
latest[nums[i]] = i;
}// tackle 2 同理 ll ans = 0;
for(int i = 1; i <= n; i++)
{
ans = (ans + (i - lb[i])*(rb[i] - i)) % MOD;
//统计序列中每一个数被统计的次数。能够理解为范围内左边选一个数的选法*右边选一个数的选法。
}
printf( "%lld\n", ans );
}
return 0;
}

另一种方法是,记录每一个数字出现的位置,每次更新的时候用二分去找距离它近期的因子的位置。可是非常麻烦也更慢。



解题报告 之 HDU5288 OO&#39; s Sequence的更多相关文章

  1. HDU 5288 OO&#39;s sequence (2015多校第一场 二分查找)

    OO's Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  2. LeetCode解题报告—— Jump Game & Merge Intervals & Permutation Sequence

    1. Jump Game Given an array of non-negative integers, you are initially positioned at the first inde ...

  3. 【九度OJ】题目1442:A sequence of numbers 解题报告

    [九度OJ]题目1442:A sequence of numbers 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1442 ...

  4. USACO Section2.1 Sorting a Three-Valued Sequence 解题报告

    sort3解题报告 —— icedream61 博客园(转载请注明出处)---------------------------------------------------------------- ...

  5. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

  6. 【NOIP2015】提高组D1 解题报告

    P1978神奇的幻方 Accepted 描述 幻方是一种很神奇的 N ∗ N 矩阵:它由数字 1,2,3, … … , N ∗ N 构成,且每行.每列及两条对角线上的数字之和都相同. 当 N 为奇数时 ...

  7. poj1173 解题报告

    poj1173 解题报告2013-07-21 13:31 by 期待 ., 42 阅读, 0 评论, 收藏, 编辑 http://poj.org/problem?id=1173 发现此题资料甚少,斗胆 ...

  8. [置顶] 刘汝佳《训练指南》动态规划::Beginner (25题)解题报告汇总

    本文出自   http://blog.csdn.net/shuangde800 刘汝佳<算法竞赛入门经典-训练指南>的动态规划部分的习题Beginner  打开 这个专题一共有25题,刷完 ...

  9. ACM-ICPC 2017 Asia HongKong 解题报告

    ACM-ICPC 2017 Asia HongKong 解题报告 任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKon ...

随机推荐

  1. 算法理论——PLA

    全称 perceptron learning algrithm 用武之地 二值分类问题,资料线性可分 算法核心(以二维平面为例) 找到一条直线WTX=0,一边全为+1,另一边全为-1.找到了这条线(即 ...

  2. 国际化多语言(本地化)缩写 NLS API

    NLS Information for Windows 7 LCID Culture Identifier Culture Name Locale Language Country/Region La ...

  3. TOJ1017: Tour Guide

      描述 You are working as a guide on a tour bus for retired people, and today you have taken your regu ...

  4. git status 下中文显示乱码问题解决

      $ git status -s                 ?? "\350\257\264\346\230\216.txt\n                 $ printf & ...

  5. 【Luogu】P2155沙拉公主的困惑(数论)

    题目链接 数论果然是硬伤qwq 还是智商上的硬伤 我们来讲两个道理 No.1 求1~i!中与i!互质的数的个数 实际上就是求i!的欧拉函数 有如下递推式: f[1]=1 if(i为合数) f[i]=f ...

  6. BZOJ3534 [Sdoi2014]重建 【矩阵树定理】

    题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...

  7. P2622 关灯问题II (状态压缩,最短路)

    题目链接 Solution 这道题算是很经典的状压问题了,好题. 考虑到 \(n\) 的范围仅为 \(10\) , 那么也就是说所有状态压起来也只有 \(1024\) 种情况. 然后我们发现 \(m\ ...

  8. 【CCF】无线网络 搜索+思维

    #include<iostream> #include<cstdio> #include<cstring> #include<string> #incl ...

  9. poj 3532 Resistance

    ---恢复内容开始--- Resistance Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1289   Accepte ...

  10. Docker 组件如何协作?

    还记得我们运行的第一个容器吗?现在通过它来体会一下 Docker 各个组件是如何协作的. 容器启动过程如下: Docker 客户端执行 docker run 命令. Docker daemon 发现本 ...