PCL支持点云的形态学滤波,四种操作:侵蚀、膨胀、开(先侵蚀后膨胀)、闭(先膨胀后侵蚀)

关于渐进的策略,在初始cell_size_ 的基础上逐渐变大。满足如下公式:

$$window\_size =cell\_size *(2*base^{k}+1)$$

$$window\_size =cell\_size *(2*base*(k+1)+1)$$

 // Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
}

在#include <pcl/filters/morphological_filter.h>中定义了枚举类型

  enum MorphologicalOperators
{
MORPH_OPEN,
MORPH_CLOSE,
MORPH_DILATE,
MORPH_ERODE
};

具体实现:

 template <typename PointT> void
pcl::applyMorphologicalOperator (const typename pcl::PointCloud<PointT>::ConstPtr &cloud_in,
float resolution, const int morphological_operator,
pcl::PointCloud<PointT> &cloud_out)
{
if (cloud_in->empty ())
return; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_out); pcl::octree::OctreePointCloudSearch<PointT> tree (resolution);

tree.setInputCloud (cloud_in);
tree.addPointsFromInputCloud (); float half_res = resolution / 2.0f; switch (morphological_operator)
{
case MORPH_DILATE:
case MORPH_ERODE:
{
for (size_t p_idx = ; p_idx < cloud_in->points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_in->points[p_idx].x - half_res;
float miny = cloud_in->points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_in->points[p_idx].x + half_res;
float maxy = cloud_in->points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (*cloud_in, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_DILATE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_ERODE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
case MORPH_OPEN:
case MORPH_CLOSE:
{
pcl::PointCloud<PointT> cloud_temp; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_temp); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices);

if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
}
}
} cloud_temp.swap (cloud_out); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
default:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
default:
{
PCL_ERROR ("Morphological operator is not supported!\n");
break;
}
} return;
}

而渐进形态学滤波则是逐渐增大窗口,循环进行开操作

template <typename PointT> void
pcl::ProgressiveMorphologicalFilter<PointT>::extract (std::vector<int>& ground)
{
bool segmentation_is_possible = initCompute ();
if (!segmentation_is_possible)
{
deinitCompute ();
return;
} // Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
} // Ground indices are initially limited to those points in the input cloud we
// wish to process
ground = *indices_; // Progressively filter ground returns using morphological open
for (size_t i = ; i < window_sizes.size (); ++i)
{
PCL_DEBUG (" Iteration %d (height threshold = %f, window size = %f)...",
i, height_thresholds[i], window_sizes[i]); // Limit filtering to those points currently considered ground returns
typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::copyPointCloud<PointT> (*input_, ground, *cloud); // Create new cloud to hold the filtered results. Apply the morphological
// opening operation at the current window size.
typename pcl::PointCloud<PointT>::Ptr cloud_f (new pcl::PointCloud<PointT>);
pcl::applyMorphologicalOperator<PointT> (cloud, window_sizes[i], MORPH_OPEN, *cloud_f); // Find indices of the points whose difference between the source and
// filtered point clouds is less than the current height threshold.
std::vector<int> pt_indices;
for (size_t p_idx = ; p_idx < ground.size (); ++p_idx)
{
float diff = cloud->points[p_idx].z - cloud_f->points[p_idx].z;
if (diff < height_thresholds[i])
pt_indices.push_back (ground[p_idx]);
} // Ground is now limited to pt_indices
ground.swap (pt_indices); PCL_DEBUG ("ground now has %d points\n", ground.size ());
} deinitCompute ();
}

[PCL]点云渐进形态学滤波的更多相关文章

  1. PCL—点云分割(基于形态学) 低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5017428.html 1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直 ...

  2. PCL—点云滤波(初步处理)

    博客转载自:http://www.cnblogs.com/ironstark/p/4991232.html 点云滤波的概念 点云滤波是点云处理的基本步骤,也是进行 high level 三维图像处理之 ...

  3. PCL—点云滤波(基于点云频率) 低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5010771.html 1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概 ...

  4. PCL中点云数据格式之间的转化

    (1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别 pcl::PointXYZ::PointXYZ ...

  5. PCL点云分割(1)

    点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...

  6. PCL点云配准(2)

    (1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点 ...

  7. PCL—点云分割(邻近信息) 低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5000147.html 分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最 ...

  8. PCL点云库(Point Cloud Library)简介

    博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=29 什么是PCL PCL(Point Cloud Library)是在吸收了 ...

  9. PCL点云库:ICP算法

    ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Alg ...

随机推荐

  1. JVM相关

    内存栅栏 1 what 说白了是一些cpu或编译器的一些同步指令 2 why cpu的cache快,而不去内存中取数据,在多线程并发中会读到cache的数据. 3 how 一般直接用关键字viloti ...

  2. MySQL批量删除指定前缀表

    Select CONCAT( 'drop table ', table_name, ';' ) FROM information_schema.tables Where table_name LIKE ...

  3. java中定时器的四种方法

    package com.lid; import java.util.Calendar; import java.util.Date; import java.util.Timer; import ja ...

  4. 什么是shell

    Shell本身是一个用C语言编写的程序,它是用户使用Linux的桥梁.Shell既是一种命令语言,又是一种程序设计语言.作为命令语言,它交互式地解释和执行用户输入的命令:作为程序设计语言,它定义了各种 ...

  5. Leetcode Gray Code

    题目的意思就是将十进制转换成格雷码 首先将二进制转换成格雷码 根据此图可以看出二进制的第i和第i+1位异或为格雷码的第i+1位,对于给定的十进制数x,其(x>>1)相当于二进制向右移动一位 ...

  6. BZOJ4563: [Haoi2016]放棋子

    Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...

  7. MySQL数据备份之mysqldump使用

    mysqldump常用于MySQL数据库逻辑备份. 1.各种用法说明 A. 最简单的用法: mysqldump -uroot -pPassword [database name] > [dump ...

  8. 建设移动端web开发会涉及到的meta标签

    <meta name="format-detection" content="telephone=no"> <meta name=" ...

  9. 20145205《Java程序设计》课程总结

    每周读书笔记链接汇总 20145205 <Java程序设计>第1周学习总结 20145205<Java程序设计>第2周学习总结 20145205 <Java程序设计> ...

  10. Python强化训练笔记(六)——让字典保持有序性

    python的字典是一个非常方便的数据结构,使用它我们可以轻易的根据姓名(键)来找到他的成绩,排名等(值),而不用去遍历整个数据集. 例如:{'Lee': [1, 100], 'Jane': [2, ...