[PCL]点云渐进形态学滤波
PCL支持点云的形态学滤波,四种操作:侵蚀、膨胀、开(先侵蚀后膨胀)、闭(先膨胀后侵蚀)
关于渐进的策略,在初始cell_size_ 的基础上逐渐变大。满足如下公式:
$$window\_size =cell\_size *(2*base^{k}+1)$$
$$window\_size =cell\_size *(2*base*(k+1)+1)$$
// Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
}
在#include <pcl/filters/morphological_filter.h>中定义了枚举类型
enum MorphologicalOperators
{
MORPH_OPEN,
MORPH_CLOSE,
MORPH_DILATE,
MORPH_ERODE
};
具体实现:
template <typename PointT> void
pcl::applyMorphologicalOperator (const typename pcl::PointCloud<PointT>::ConstPtr &cloud_in,
float resolution, const int morphological_operator,
pcl::PointCloud<PointT> &cloud_out)
{
if (cloud_in->empty ())
return; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_out); pcl::octree::OctreePointCloudSearch<PointT> tree (resolution);
tree.setInputCloud (cloud_in);
tree.addPointsFromInputCloud (); float half_res = resolution / 2.0f; switch (morphological_operator)
{
case MORPH_DILATE:
case MORPH_ERODE:
{
for (size_t p_idx = ; p_idx < cloud_in->points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_in->points[p_idx].x - half_res;
float miny = cloud_in->points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_in->points[p_idx].x + half_res;
float maxy = cloud_in->points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (*cloud_in, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_DILATE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_ERODE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
case MORPH_OPEN:
case MORPH_CLOSE:
{
pcl::PointCloud<PointT> cloud_temp; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_temp); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices);
if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
}
}
} cloud_temp.swap (cloud_out); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
default:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
default:
{
PCL_ERROR ("Morphological operator is not supported!\n");
break;
}
} return;
}
而渐进形态学滤波则是逐渐增大窗口,循环进行开操作
template <typename PointT> void
pcl::ProgressiveMorphologicalFilter<PointT>::extract (std::vector<int>& ground)
{
bool segmentation_is_possible = initCompute ();
if (!segmentation_is_possible)
{
deinitCompute ();
return;
} // Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
} // Ground indices are initially limited to those points in the input cloud we
// wish to process
ground = *indices_; // Progressively filter ground returns using morphological open
for (size_t i = ; i < window_sizes.size (); ++i)
{
PCL_DEBUG (" Iteration %d (height threshold = %f, window size = %f)...",
i, height_thresholds[i], window_sizes[i]); // Limit filtering to those points currently considered ground returns
typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::copyPointCloud<PointT> (*input_, ground, *cloud); // Create new cloud to hold the filtered results. Apply the morphological
// opening operation at the current window size.
typename pcl::PointCloud<PointT>::Ptr cloud_f (new pcl::PointCloud<PointT>);
pcl::applyMorphologicalOperator<PointT> (cloud, window_sizes[i], MORPH_OPEN, *cloud_f); // Find indices of the points whose difference between the source and
// filtered point clouds is less than the current height threshold.
std::vector<int> pt_indices;
for (size_t p_idx = ; p_idx < ground.size (); ++p_idx)
{
float diff = cloud->points[p_idx].z - cloud_f->points[p_idx].z;
if (diff < height_thresholds[i])
pt_indices.push_back (ground[p_idx]);
} // Ground is now limited to pt_indices
ground.swap (pt_indices); PCL_DEBUG ("ground now has %d points\n", ground.size ());
} deinitCompute ();
}
[PCL]点云渐进形态学滤波的更多相关文章
- PCL—点云分割(基于形态学) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5017428.html 1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直 ...
- PCL—点云滤波(初步处理)
博客转载自:http://www.cnblogs.com/ironstark/p/4991232.html 点云滤波的概念 点云滤波是点云处理的基本步骤,也是进行 high level 三维图像处理之 ...
- PCL—点云滤波(基于点云频率) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5010771.html 1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概 ...
- PCL中点云数据格式之间的转化
(1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别 pcl::PointXYZ::PointXYZ ...
- PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...
- PCL点云配准(2)
(1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点 ...
- PCL—点云分割(邻近信息) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5000147.html 分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最 ...
- PCL点云库(Point Cloud Library)简介
博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=29 什么是PCL PCL(Point Cloud Library)是在吸收了 ...
- PCL点云库:ICP算法
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Alg ...
随机推荐
- MVC Controller Dependency Injection for Beginners【翻译】
在codeproject看到一篇文章,群里的一个朋友要帮忙我翻译一下顺便贴出来,这篇文章适合新手,也算是对MEF的一个简单用法的介绍. Introduction In a simple stateme ...
- [译]:Orchard入门——部件管理
原文链接:Managing Widgets 在Orchard中,部件是可以加入到当前当前主题任何位置或区域(如侧栏sidebar或底部区域footer)的UI块(如:HTML)或代码部分(如:内容部分 ...
- 复制Eclipse工作空间设置
将新建的workspace下的.metadata.plugins内容全部删除: 将原来的workspace下的.metadata.plugins内容除了org.eclipse.core.resourc ...
- Js中最常见的异常捕捉 TryCatch
今天检查网页的时候因为一段Js报错 导致下面的js没有执行(一个js动态添加的弹窗没有出现) 原因是因为 一个属性本身是undefined 找不到 无法给他赋值 这里的原因很简单 也已经修改好了但是这 ...
- http返回码301、302、307、305含义和区别
301永久重定向,302暂时移动,seo对301和302的处理不一样: 301和302会出现数据丢失问题,重定向后请求数据丢失: 307临时重定向,数据不会丢失:
- 【面试】http协议知识
一.什么是HTTP协议 HTTP协议是一种应用层协议,HTTP是HyperText Transfer Protocol(超文本传输协议)的英文缩写.HTTP可以通过传输层的TCP协议在客 ...
- Android -- 时间轴(ListView)
1. 实现效果
- Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_The49DayPersonalFullscreenGiftModel", referenced from: objc-class-ref in The49DayPersonalRoomGiftModel.o ld: symbol(s) not found for a
Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_The49DayPersonalFullscreenGiftModel&q ...
- mysql缓存、存储引擎
一. mysql查询缓存 查询缓存不是mysql的子系统,却是查询优化和执行子系统不可缺少的组成部分.它不仅可以缓存查询结果,还可以缓存查询结果本身.如果某个查询的结果就在缓存里, 系 ...
- Android 双卡双待识别
简介 Android双卡双待已经越来越普及了,解决双卡双待管理是广大手机开发人员必须得面对的问题,为实现Android平台的双卡双待操作,笔者研究了Android 应用层操作双卡双待的机制. 机制 获 ...