线段树


Description

N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.

Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.

Given this data, tell FJ the exact ordering of the cows.

Input

  • Line 1: A single integer, N

  • Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.

Output

  • Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.

Sample Input

5

1

2

1

0

Sample Output

2

4

5

3

1


题目大意

1 ~ n 中的 n 个数以某一个顺序排列,给出这个排列中对于于第 2 到第 n 个数,在它前面并且比它小的数字个数。让你输出这个排列。

题解

这道题比较基本,和poj2828很相似,我就直接用那道题的代码改了。用线段树来维护每个数是否出现过。

从后往前更新。

例如样例 (0), 1, 2, 1, 0;

先更新第 5 个位置,查询第 1 个还没出现过的数字,得到 1,将其赋值为 0 (已出现过),更新ans[5] = 1;

然后更新第 4 个位置,查询第 2 个没出现过的数字,得到 3 ,更新ans[4] = 3;

......剩下的应该知道怎么做了吧,线段树中的值表示该区间中没有出现过的数的个数。

代码

#include <iostream>
using namespace std;
#define pushup(u) {sum[u] = sum[u<<1] + sum[u<<1|1];}
#define ls u<<1,l,mid
#define rs u<<1|1,mid+1,r const int maxn = 2e5 + 5;
int sum[maxn << 2];
int ans[maxn];
int pos[maxn]; void build(int u,int l,int r) {
sum[u] = r - l + 1;
if(l == r)return;
int mid = (l + r) >> 1;
build(ls);
build(rs);
} int update(int u,int l,int r,int x,int a) {
if(l == r){
sum[u] = 0;
return l;
}
int res;
int mid = (l + r) >> 1;
if(sum[u << 1] >= x)res = update(ls,x,a);
else res = update(rs,x - sum[u<<1],a);
pushup(u);
return res;
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
int n;
while(cin >> n) {
build(1,1,n);
pos[1] = 0;
for(int i = 2;i <= n;i++) {
cin >> pos[i];
}
for(int i = n;i > 0;i--) {
ans[i] = update(1,1,n,pos[i] + 1,i);
}
for(int i = 1;i <= n;i++) {
cout << ans[i] << endl;
}
} return 0;
}

[poj2182] Lost Cows (线段树)的更多相关文章

  1. POJ 2481 Cows (线段树)

    Cows 题目:http://poj.org/problem?id=2481 题意:有N头牛,每仅仅牛有一个值[S,E],假设对于牛i和牛j来说,它们的值满足以下的条件则证明牛i比牛j强壮:Si &l ...

  2. POJ 2182 Lost Cows (线段树)

    题目大意: 有 n 头牛,编号为 1 - n 乱序排成一列,现已知每头牛前面有多少头牛比它的编号小,从前往后输出每头牛的编号. 思路: 从后往前推,假如排在最后的一头牛比他编号小的数量为a,那么它的编 ...

  3. Lost Cows(线段树 POJ2182)

    Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10354 Accepted: 6631 Descriptio ...

  4. [POJ2182]Lost Cows(树状数组,二分)

    题目链接:http://poj.org/problem?id=2182 题意:给定1~n个数和n个位置,已知ai表示第i个位置前有ai个数比当前位置的数小,求这个排列. 和刚才YY的题意蛮接近的,用树 ...

  5. hdu 2711&&poj2182 Lost Cows (线段树)

    从后往前查第一个为0的奶牛肯定应该排在第一个.每次从后往前找到第一个为0的数,这个数应该插在第j位.查找之后,修改节点的值为极大值,当整棵树的最小值不为0的时候查找结束. 至于这种查找修改的操作,再没 ...

  6. poj2182(线段树求序列第k小)

    题目链接:https://vjudge.net/problem/POJ-2182 题意:有n头牛,从1..n编号,乱序排成一列,给出第2..n个牛其前面有多少比它编号小的个数,记为a[i],求该序列的 ...

  7. POJ2182题解——线段树

    POJ2182题解——线段树 2019-12-20 by juruoOIer 1.线段树简介(来源:百度百科) 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线 ...

  8. POJ 2182&& POJ 2828:Lost Cows 从后往前 线段树

    Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10544   Accepted: 6754 Descri ...

  9. ACM/ICPC 之 数据结构-线段树思想(POJ2182,含O(n^2)插入式解法)

    这道题在一定程度上体现了线段树的一种用法,解决的问题是:对于总计n个元素的第i个元素,已知其在[1,i]上部分序列的排名,求第i个元素在所有n个元素中的排名. 当然这道题数据比较水,所以用O(n^2) ...

随机推荐

  1. 鼠绘漫画 for wp8.1

    技术规格总结: 这个APP 总体上是下载图片的一个APP 所以对图片的查看&控制上需要一定功力,至少有一个稳定的缩小,放大的图片控件. 搭载WP系统的手机,内存上大部分不是很大,所以内存的控制 ...

  2. spring+mybatis 手动开启和提交事务

    spring配置文件 事务控制管理器transactionManager <!-- (事务管理)transaction manager, use JtaTransactionManager fo ...

  3. Issue 7: 网络in action

    网络运维基础 基础参数 配置:IP,子网掩码,网关,dns服务器,dhcp服务器 基础应用 在网关设置上搭建VPN组网 改host文件 单台主机原则上只能配置一个网关 协议 协议是全球都遵守的一套编码 ...

  4. AOP programming paradiag

    AOP https://en.wikipedia.org/wiki/Aspect-oriented_programming Typically, an aspect is scattered or t ...

  5. 利用Socket远程发送文件

    思想: 1.注意使用两个通道,一个普通对象通信通道,另一个纯净的文件字节流通道 2.利用通信通道发送文件请求,新建字节流通道,开始发送文件

  6. jQuery 菜单

  7. javaweb 学习资源

    http://jinnianshilongnian.iteye.com/category/231099

  8. ajaxfileupload 传参数

    引用:http://www.cnblogs.com/lyeo/archive/2012/05/11/2496261.html 直接上代码: var data = { name: 'my name', ...

  9. 多线程迭代之——LINQ to TaskQuery

    平时经常会迭代集合,如果数据多的话会很耗时. 例子: , , }; list.ForEach(a => DoSomething(a)); void DoSomething(int a) { // ...

  10. eBox(stm32) 之中断结构

    eBox的中断结构参考了mbed,和我们平时所用的中断结构有些差异,不容易理解,最近仔细看了底层代码,终于搞清楚了,总结一下         一  首先要要搞清楚的几个概念:类的静态成员,实例成员   ...