Area Coverage
Time Limit: 10000ms, Special Time Limit:2500ms, Memory Limit:65536KB
Total submit users: 16, Accepted users: 12
Problem 12884 : No special judgement
Problem description

In this day and age, a lot of the spying on other countries is done with the use of satellites and drones equipped with cameras. All these photographs of various sizes and from various sources can be combined to give a picture of the country as a whole.
Given the photographs (that is to say, the rectangular
area covered by each, since the contents of the photographs themselves are of
course top-secret!), can you work out what the total area is of all that is
photographed? Note that certain areas can appear on multiple photographs and
should be counted only once.

Input

On the first line one positive number: the number of test cases, at most 100.
After that per test case:
one line with an integer n (1<=n<=1000):
the number of photographs.
n lines with four space-separated integers x1,
y1, x2 and y2 (0<=x1; y1; x2; y2<=1 000 000, x1 < x2 and y1 < y2):
the coordinates of the southwest and northeast corner, respectively, of each
photograph. The photographs are all rectangular in shape with their other
corners at (x1; y2) and (x2; y1).
The coordinates correspond to a flat
two-dimensional space (i.e. we assume the Earth to be
flat).

Output

Per test case:
one line with an integer: the total area of all that
appears on the photographs.

Sample Input
2
3
0 6 20 16
14 0 24 10
50 50 60 60
2
0 0 20 10
10 4 14 8
Sample Output
376
200
Problem Source
BAPC preliminary 2013

Mean:

在二维平面中,给你一些矩形的左下坐标(x1,y1)和右上坐标(x2,y2),让你求这些矩形面积的并。

analyse:

我们在y轴方向上维护一棵线段树。该线段树的模型是区间覆盖,即应该对像某个区间有没有被覆盖这样的查询,以及添加覆盖和删除覆盖这样的操作---也就是将矩形的左右两边界看作对y轴的覆盖来处理。我们将所有矩形的左右边界按照x坐标升序排序。每个矩形的左边界执行对y轴的覆盖操作,右边界执行对x轴的删除覆盖操作。

每次插入一条线段的时候,我们判断cover值(覆盖的次数),如果>0那么就算面积。

如图:

初始时每条线段的cover都为0;

线段1插入后,所对应的区间cover变为1,当第二条线段插入时,我们先判断一下该区间上的cover值,发现有一段cover是大于0的,所以就将对应的面积(蓝色部分)加入ans中,此时线段2下半部分的cover值变为2,上部分的cover值变为1,还要把线段1的上部分的x坐标更新为线段2的x值;

当第三条直线插入时,同样的道理,加入的是黄色部分的面积;第四条进入时,加入的是紫色部分的面积。

这样,我们只需要在插入前先计算面积,当所有线段插入结束,answer也就出来了。

所以我们的线段树只需要两个函数:build和insert函数。

Time complexity:O(n*logn)

Source code:

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-07-23-20.40
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define  LL long long
#define  ULL unsigned long long
using namespace std;

const int N = ;
double y[ * N];
struct LINE
{
     double x, y_down, y_up;
     int flag;//左线段or右线段
};
LINE line[N << ];
struct Tree
{
     int x;
     int cover;        // 覆盖次数
     bool flag;         // 是否为叶子节点
     int y_up, y_down;
};
Tree tree[( << ) * ];
bool cmp( LINE a, LINE b )
{
     return a.x < b.x;
}
void build( int l, int r, int x )
{
     tree[x].x = -; //-1表示该区间没有线段
     tree[x].cover = ;
     tree[x].flag = false;
     tree[x].y_up = y[r];
     tree[x].y_down = y[l];
     if( l + == r ) // 叶子结点: (1,2) (2,3) (3,4) (4,5)....
     {
           tree[x].flag = true;
           return;
     }
     int tmp = x << ;
     int mid = ( l + r ) >> ;
     build( l, mid, tmp );
     build( mid, r, tmp + );;
}
double insert( int i, double x, double l, double r, int flag )
{
     if( r <= tree[i].y_down || l >= tree[i].y_up ) //要插入的线段不在该区间
           return ;
     if( tree[i].flag ) //叶子节点
     {
           if( tree[i].cover > )     // 需要求并面积
           {
                 double temp_x = tree[i].x;
                 double ans = ( x - temp_x ) * ( tree[i].y_up - tree[i].y_down ); // 宽*高
                 tree[i].x = x; // 更新树中的x值
                 tree[i].cover += flag;
                 return ans;
           }
           else
           {
                 tree[i].cover += flag;
                 tree[i].x = x;
                 return ;
           }
     }
     double ans1, ans2;
     int tmp = i << ;
     ans1 = insert( tmp, x, l, r, flag );
     ans2 = insert( tmp + , x, l, r, flag );
     return ans1 + ans2;
}

int main()
{
     ios_base::sync_with_stdio( false );
     cin.tie( );
     int T;
     cin >> T;
     double x1, y1, x2, y2;
     while( T-- )
     {
           int n;
           cin >> n;
           int index = ;
           for( int i = ; i <= n; i++ )
           {
                 scanf( "%lf %lf %lf %lf", &x1, &y1, &x2, &y2 );
                 y[index] = y1;
                 line[index].x = x1;
                 line[index].y_down = y1;
                 line[index].y_up = y2;
                 line[index].flag = ;
                 index++;
                 y[index] = y2;
                 line[index].x = x2;
                 line[index].y_down = y1;
                 line[index].y_up = y2;
                 line[index].flag = -;
                 index++;
           }
           index--;
           double ans = 0.0;
           sort( line + , line + + index, cmp );
           sort( y + , y + + index );
           build( , index, );
           for( int i = ; i <= index; i++ )
           {
                 ans += insert( , line[i].x, line[i].y_down, line[i].y_up, line[i].flag );
           }
           printf( "%.0lf\n", ans );
     }
     return ;
}

扫描线 + 线段树 : 求矩形面积的并 ---- hnu : 12884 Area Coverage的更多相关文章

  1. POJ 1151Atlantis 扫描线+线段树求矩形面积并

    题目链接 #include <iostream> #include <vector> #include <cstdio> #include <cstring& ...

  2. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  3. 【hdu1542】线段树求矩形面积并

    分割线内容转载自http://hzwer.com/879.html ------------------------------------------------------------------ ...

  4. POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并

    题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...

  5. POJ 1151 Atlantis 线段树求矩形面积并 方法详解

    第一次做线段树扫描法的题,网搜各种讲解,发现大多数都讲得太过简洁,不是太容易理解.所以自己打算写一个详细的.看完必会o(∩_∩)o 顾名思义,扫描法就是用一根想象中的线扫过所有矩形,在写代码的过程中, ...

  6. 【hdu1255】线段树求矩形面积交

    题意大概就是上图这个样子.<=100组测试数据,每组<=1000个矩形. 题解: 这个问题怎么解决..做了上一题矩形面积并应该就会了.. 对于每个节点维护3个值: cnt:该节点所代表的这 ...

  7. HDU 1255 覆盖的面积 (扫描线 线段树 离散化 矩形面积并)

    题目链接 题意:中文题意. 分析:纯手敲,与上一道题目很相似,但是刚开始我以为只是把cnt>=0改成cnt>=2就行了,. 但是后来发现当当前加入的线段的范围之前 还有线段的时候就不行了, ...

  8. UVA 11983 Weird Advertisement --线段树求矩形问题

    题意:给出n个矩形,求矩形中被覆盖K次以上的面积的和. 解法:整体与求矩形面积并差不多,不过在更新pushup改变len的时候,要有一层循环,来更新tree[rt].len[i],其中tree[rt] ...

  9. HDU 1542.Atlantis-线段树求矩形面积并(离散化、扫描线/线段树)-贴模板

    好久没写过博客了,这学期不是很有热情去写博客,写过的题也懒得写题解.现在来水一水博客,写一下若干年前的题目的题解. Atlantis Time Limit: 2000/1000 MS (Java/Ot ...

随机推荐

  1. SWT: 发起事件 post event

    有很多学习SWT的同志遇到过一类需求,为某些控件添加了诸如MouseListener.KeyListener之类的监听,然后呢,希望使用代码模拟鼠标.键盘来执行点击.按键等操作. 首先说明一点,这是可 ...

  2. Python3实现TCP端口扫描器

    本文来自 高海峰对 玄魂工作室 的投稿 作者:高海峰 QQ:543589796 在渗透测试的初步阶段通常我们都需要对攻击目标进行信息搜集,而端口扫描就是信息搜集中至关重要的一个步骤.通过端口扫描我们可 ...

  3. C# WPF获取任务栏时间区域的Rectangle

    [StructLayout(LayoutKind.Sequential)] public struct WindowRect { public int left; public int top; pu ...

  4. 探求网页同步提交、ajax和comet不为人知的秘密(上篇)

    标题里的技术都是web开发里最常见的技术,但是我想这些常用的技术有很多细节是很多朋友不太清楚的,理解这些细节是我们深入掌握这些技术的一把钥匙,今天我就讲讲我使用这些技术时体会到的这些细节. 同步提交是 ...

  5. Stealth视频教程学习笔记(第二章)

    Stealth视频教程学习笔记(第二章) 本文是对Unity官方视频教程Stealth的学习笔记.在此之前,本人整理了Stealth视频的英文字幕,并放到了优酷上.本文将分别对各个视频进行学习总结,提 ...

  6. C struct结构体内存对齐问题

    在空间看到别人的疑问引起了我的兴趣,刚好是我感兴趣的话题,就写一下.为了别人的疑问,也发表在qq空间里.因为下班比较晚,10点才到家,发表的也晚.其实是个简单的问题.  直接用实例和内存图说明: #i ...

  7. AFNetworking+Python+Flask+pyOpenSSL构建iOS HTTPS客户端&服务器端

    对于HTTPS我在网上找了一堆资料看了下, 各种协议和证书已经有点晕了 最后我现有的感觉是, 在HTTP服务器上放一个证书, 在原本的HTTP访问之前客户端先检查证书是否正确 如果客户端证书检查正确, ...

  8. EF架构~在T4模版中为所有属性加默认值

    回到目录 在项目开发过程中,出现了一个问题,就是新添加一个非空字段后,原来的程序逻辑需要被重新修改,即将原来的字段添加到程序里,这种作法是非常不提倡的,所以,我通过T4模版将原来的实体类小作修改,解决 ...

  9. paip. 解决php 以及 python 连接access无效的参数量。参数不足,期待是 1”的错误

    paip. 解决php 以及 python 连接access无效的参数量.参数不足,期待是 1"的错误 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源 ...

  10. MongoDB修改器的使用2

    1."$inc"的使用 主要用来增加数值,比如网站的访问量,点击量,流量等 db.games.insert({game:"pinball",user:" ...