画黑底白字的软件:KolourPaint。

假设所有“1”的图片放到名字为1的文件夹下。(0-9类似)。。获取每个数字的名称文件后,手动表上标签。然后合成train。txt

1、获取文件夹内全部图像的名称:

find ./1 -name '*.png'>1.txt

//此时的1.txt文件中的图像名称包括路劲信息,要把前面的路径信息去掉。

$ sudo sed -i "s/.\/1\///g" 1.txt          //(\表示转义,所以这里用双引号而不是单引号)

2、要在1.txt 内的每个名称后面加上标签

1.txt:

1101.png  1

1102.png  1

.....(如此)

3、将图片数据转换为lmdb格式的数据

caffe/examples下建一个文件保存训练用的文件:sd_mnist

3.1 sd_mnist下创建一个sd_create_lmdb.sh用来转换图片格式:

sudo vim sd_create_lmdb.sh  ,内容如下:

#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs

EXAMPLE=examples/sd_mnist       (!注意:这是你在examples下创建的目录)
DATA=data/sd_mnist      (!注意:就是你在data文件夹下新建目录,里面有两个图片集(训练和测试训练集)及上面所说的两个txt)
TOOLS=build/tools

TRAIN_DATA_ROOT=data/sd_mnist/train/     (!注意:就是训练图片集路径)
VAL_DATA_ROOT=data/sd_mnist/test/      (!注意:就是测试图片集路径)

# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=28
RESIZE_WIDTH=28
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet training data is stored."
exit 1
fi

if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet validation data is stored."
exit 1
fi

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \                (!注意路劲)
$EXAMPLE/mnist_train_lmdb

echo "Creating test lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$DATA/test.txt \          (!注意路劲)
$EXAMPLE/mnist_test_lmdb

echo "Done."

-----------------------------------------------------------------------

3.2 运行sh example/sd_mnist/sd_create_lmdb.sh

如果成功的话,终端返回的信息中,图片是有大小的而不是0kb。并且在examples/sd_mnist下会有两个文件:mnist_train_lmdb,mnist_test_lmdb它们里面都是data.mdb和lock.mdb。

4、对我们的数据集进行训练:下面的文件都是从caffe\examples\mnist下复制到caffe\examples\sd_mnist下来进行修改的。主要是修改路径信息,整个网络保持不变。

4.1第一个sh文件是train_lenet,sh

#!/usr/bin/env sh
set -e

./build/tools/caffe train --solver=examples/sd_mnist/lenet_solver.prototxt $@

4.2、复制lenet_solver.prototxt文件,并修改:

# The train/test net protocol buffer definition
net: "examples/sd_mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/sd_mnist/lenet"
# solver mode: CPU or GPU
solver_mode: CPU

4.3、lenet_train_test.prototxt复制从mnist文件夹到当前文件夹下

修改路径

name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/sd_mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/sd_mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

4.4 lenet.prototxt复制从mnist文件夹到当前文件夹下,不用修改

4.5 运行 sh example/sd_mnist/train_lenet.sh

没报错,出来accuracy loss这些,说明成功!!

参考:http://blog.csdn.net/xiaoxiao_huitailang/article/details/51361036

caffe:用自己的数据训练网络mnist的更多相关文章

  1. 用caffe跑自己的数据,基于WINDOWS的caffe

    本文详细介绍,如何用caffe跑自己的图像数据用于分类. 1 首先需要安装过程见 http://www.cnblogs.com/love6tao/p/5706830.html 同时依据上面教程,生成了 ...

  2. Windows下用Caffe跑自己的数据(遥感影像)

    1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下 ...

  3. 『计算机视觉』Mask-RCNN_训练网络其三:训练Model

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  4. 『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  5. 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  6. Caffe Blob针对图像数据在内存中的组织方式

    Caffe使用Blob结构在CNN网络中存储.传递数据.对于批量2D图像数据,Blob的维度为 图像数量N × 通道数C × 图像高度H × 图像宽度W 显然,在此种场景下,Blob使用4维坐标定位数 ...

  7. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  8. Ubuntu16.04下caffe CPU版的图片训练和测试

    一 数据准备 二.转换为lmdb格式 1.首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件.然后编写一个脚本create_filelist.sh,用来生成train ...

  9. AI:拿来主义——预训练网络(一)

    我们已经训练过几个神经网络了,识别手写数字,房价预测或者是区分猫和狗,那随之而来就有一个问题,这些训练出的网络怎么用,每个问题我都需要重新去训练网络吗?因为程序员都不太喜欢做重复的事情,因此答案肯定是 ...

随机推荐

  1. css实现隐藏显示

    <head> <meta http-equiv="content-type" content="text/html;charset=utf-8" ...

  2. Kruskal(测试源代码)

    1.此程序为c++程序 2.以下代码可实现手动输入,即去掉代码中的/*...*/注释符,并同时去掉赋值代码段 3.源代码 #include<iostream> using namespac ...

  3. java生成二维码(需导入第三方ZXing.jar包)

    //这个类是用来解析,通过图片解析该图片的网页链接是什么 package util; import java.awt.Graphics2D;import java.awt.geom.AffineTra ...

  4. java文件编译及运行

    1 配置环境变量 使用鼠标右击“我的电脑”->属性->高级->环境变量 系统变量->新建->变量名:JAVA_HOME 变量值:C:\Program Files (x86 ...

  5. 页码条--字符串拼接--重写HtmlHelper

    public static HtmlString ShowPageNavigate(this HtmlHelper htmlHelper, int currentPage, int pageSize, ...

  6. Xshell访问虚拟机内Linux

    这段时间在家,需要用到Linux,身边的电脑硬盘很小,装双系统用的频率也不高还浪费磁盘空间,还是使用虚拟机,通过Xshell管理虚拟机内Ubuntu还是比较方便的.很早之前学习hadoop的时候就是用 ...

  7. delegate和protocol

    协议和代理对于一个新手来说确实不讨好理解,也有很多的iOS开发的老手对此是懂非懂的.网上的很多博文只是讲了怎么使用,并没有说的很明白.下面我谈一下我的理解. 1.你要先搞明白,协议和代理为什么会出现, ...

  8. pthread_create 内存释放

    run() { pthread_attr_destroy(&m_attr);    pthread_detach(pthread_self()); }

  9. linux部署不同版本mysql

    测试环境部署过程中经常会遇到同一个服务器上部署两个不同版本的mysql数据库,在部署过程中也会有各种各样的问题,现将部署多版本mysql的方法总结如下: 1.下载mysql版本 http://down ...

  10. Git分支管理

    一.Git分支的使用 查看分支: git branch 创建分支: git branch branch1 切换到branch1 git checkout branch1 再用git branch查看, ...