为什么要给表加上主键?

为什么加索引后会使查询变快?

为什么加索引后会使写入、修改、删除变慢?

什么情况下要同时在两个字段上建索引?

想理解索引原理必须清楚一种数据结构(平衡树非二叉)也就是b tree 或者 b+ tree。有的是有哈希桶做索引的数据结构,然而主流的RDBMS都是把平衡树当做数据表默认的索引数据结构的。

我们平时建表的时候都会为表加上主键, 在某些关系数据库中, 如果建表时不指定主键,数据库会拒绝建表的语句执行。 事实上, 一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

上图就是带有主键的表(聚集索引)的结构图.

其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。 假如我们执行一个SQL语句:

select * from table where id = 1256;

首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果。如下图

假如一张表有一亿条数据 ,需要查找其中某一条数据,按照常规逻辑, 一条一条的去匹配的话, 最坏的情况下需要匹配一亿次才能得到结果,用大O标记法就是O(n)最坏时间复杂度,这是无法接受的,而且这一亿条数据显然不能一次性读入内存供程序使用, 因此, 这一亿次匹配在不经缓存优化的情况下就是一亿次IO开销,以现在磁盘的IO能力和CPU的运算能力, 有可能需要几个月才能得出结果 。如果把这张表转换成平衡树结构(一棵非常茂盛和节点非常多的树),假设这棵树有10层,那么只需要10次IO开销就能查找到所需要的数据, 速度以指数级别提升,用大O标记法就是O(log n),n是记录总树,底数是树的分叉数,结果就是树的层次数。换言之,查找次数是以树的分叉数为底,记录总数的对数,用公式来表示就是

【Important】数据库索引原理的更多相关文章

  1. mysql进阶(二十七)数据库索引原理

    mysql进阶(二十七)数据库索引原理 前言   本文主要是阐述MySQL索引机制,主要是说明存储引擎Innodb.   第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础.    ...

  2. B-tree&B+tree&数据库索引原理

    B-tree&B+tree:https://www.cnblogs.com/vianzhang/p/7922426.html 数据库索引原理:https://www.cnblogs.com/a ...

  3. MySQL 深入浅出数据库索引原理(转)

    本文转自:https://www.cnblogs.com/aspwebchh/p/6652855.html 前段时间,公司一个新上线的网站出现页面响应速度缓慢的问题, 一位负责这个项目的但并不是搞技术 ...

  4. mysql数据库----索引原理与慢查询优化

    一.介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语 ...

  5. mysql数据库索引原理及其常用引擎对比

    索引原理 树数据结构及其算法简介 B+/-树: - 多路搜索树; - 时间复杂度O(logdN);h为节点出度,d为深度 红黑树: - 节点带有颜色的平衡二叉树 - 时间复杂度O(log2N);h节点 ...

  6. 数据库索引原理,及MySQL索引类型(转)

    在数据库表中,对字段建立索引可以大大提高查询速度.假如我们创建了一个 mytable表: CREATE TABLE mytable( ID INT NOT NULL, username ) NOT N ...

  7. (转)MySql数据库索引原理(总结性)

    本文引用文章如链接: http://www.codinglabs.org/html/theory-of-mysql-index.html#more-100 参考书籍:Mysql技术内幕 本文主要是阐述 ...

  8. MySQL 数据库--索引原理与慢查询优化

    索引的原理 本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据. 索引的数据结构 b+ ...

  9. MySql数据库索引原理

    写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将 ...

随机推荐

  1. Android的Databinding-普通绑定

    1. 使用ActivityBasicBinding binding = DataBindingUtil.setContentView(this, R.layout.main);代替之前使用的setCo ...

  2. import pandas as pd Python安装pandas模块

    在学习python过程中需要用到一个叫pandas的模块,在pycharm中安装时总是出错. 千般百度折腾还是无果,后来发现它需要安装很多依赖包.就问你气不气~ 需要手动安装啊,千万记住,这里有个py ...

  3. sf2gis@163.com

    1.下载boost1.52,http://www.boost.org/.解压文件到d:\boost\boost_1_52_0. 2.下载python2.7.3,http://www.python.or ...

  4. 构建第一个 Spring Boot 工程

    Spring Boot概述 什么是Spring Boot 随着动态语言的流行,java的开发显得格外笨重,繁多的配置文件编写,低下的开发效率,复杂的部署流程以及第三方技术集成难度大. 在上述环境下Sp ...

  5. 图像的视差匹配(Stereo Matching)

    这里要求用我们自己计算得到的视差图和给的视差图作比較来比較我们得到的视差图的好坏程度,我视差图返回的值是计算得到的视差乘以3之后的图,所以在计算时我不是两个值相差大于1,而是大于3.由于两个图像都乘3 ...

  6. 【Zookeeper】源码分析之网络通信(三)之NettyServerCnxn

    一.前言 前面已经学习了NIOServerCnxn,接着继续学习NettyServerCnxn. 二.NettyServerCnxn源码分析 2.1 类的继承关系 public class Netty ...

  7. Jexus 网站服务器和 ASP.NET 跨平台开发

    微软的跨平台战略 微软在过去的一年多中时间中发生了令整个 IT 行业感到惊叹的变化.这一切始于 Ballmer 的退位和 Nadella 的决心,更始于早已在微软各个基层部门蠢蠢欲动的二次创业. 以开 ...

  8. Nginx 访问日志配置

    一.Nginx 访问日志介绍 Nginx 软件会把每个用户访问网站的日志信息记录到指定的日志文件里,供网站提供者分析用户的浏览行为等,此功能由 ngx_http_log_module 模块负责. 二. ...

  9. Chrome Debugger 温故而知新:上下文环境

    最早是在IOS开发中看到过这种调试方式.在无意间发现Chrome Debugger也可以.直接上图: 解释:默认的控制台想访问变量.都是只能访问全局的.但当我们用debugger; 断点进入到内部时, ...

  10. 讲一讲MySQL如何防止“老鼠屎”类型的SQL语句

    [原谅我标题党了] 当然不可能有哪一个SQL语句会这么出名,以至于大家叫它“老鼠屎”:但是有一些SQL语句确实主是做着这样的事:由于程序的 局部性原理,数据库会把常用的数据缓存到内存中,对于这种场景通 ...