更新:x1,y1,x2,y2不用long long 会wa。。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 200005
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
ll A[maxn<<],B[maxn<<],C[maxn<<];//系数a,b,c在t[l,r]区间的取值 inline void pushdown(int rt){
A[rt<<]+=A[rt];A[rt<<|]+=A[rt];
B[rt<<]+=B[rt];B[rt<<|]+=B[rt];
C[rt<<]+=C[rt];C[rt<<|]+=C[rt];
A[rt]=B[rt]=C[rt]=;
}
//区间【L,R】的a,b,c更新
void update(int L,int R,int l,int r,int rt,ll a,ll b,ll c){
if(L<=l && R>=r){
A[rt]+=a;
B[rt]+=b;
C[rt]+=c;
return;
}
int m=l+r>>;
if(L<=m) update(L,R,lson,a,b,c);
if(R>m) update(L,R,rson,a,b,c);
}
//询问t小于等于pos的一元二次式的值
ll query(ll t,int l,int r,int rt){
if(l==r){
return A[rt]*t*t+B[rt]*t+C[rt];
}
pushdown(rt);
int m=l+r>>;
if(t<=m) return query(t,lson);
else return query(t,rson);
}
void solve(ll x1,ll y1,ll x2,ll y2){
//t如果大于max(x2,y2),那么就是覆盖了整块被子,此时a,b皆为0
update(max(x2,y2)+,maxn,,maxn,,,,(x2-x1)*(y2-y1));
//a为0的状态
if(x2<y2)//t先触碰到右边,那么t在max(x2,y1)+1到y2之间一直是线性增长的
update(max(x2,y1)+,y2,,maxn,,,x2-x1,y1*(x1-x2));
else //t先触碰到上边,那么t在max(x1,y2)+1到x2之间一直是线性增长的
update(max(x1,y2)+,x2,,maxn,,,-y1+y2,x1*(y1-y2));
//最后的情况,三个系数都不是0
if(max(x1,y1)<min(x2,y2))
update(max(x1,y1),min(x2,y2),,maxn,,,-(x1+y1),x1*y1);
}
int main(){
int T,N;
ll x,t;
ll x1,y1,x2,y2;
cin >> T;
while(T--){
memset(A,,sizeof A);
memset(B,,sizeof B);
memset(C,,sizeof C); scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
solve(x1,y1,x2,y2);
}
scanf("%lld",&x);
while(x--){
scanf("%lld",&t);
printf("%lld\n",query(t,,maxn,));
}
}
return ;
}

wa了,为什么呢

/**
推公式就完事了
要推出关于t的一元二次方程的值a,b,c关于t的函数,即t的分段函数
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 200005
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
ll A[maxn<<],B[maxn<<],C[maxn<<];//系数a,b,c在t[l,r]区间的取值 inline void pushdown(int rt){
A[rt<<]+=A[rt];A[rt<<|]+=A[rt];
B[rt<<]+=B[rt];B[rt<<|]+=B[rt];
C[rt<<]+=C[rt];C[rt<<|]+=C[rt];
A[rt]=B[rt]=C[rt]=;
}
//区间【L,R】的a,b,c更新
void update(int L,int R,int l,int r,int rt,ll a,ll b,ll c){
if(L<=l && R>=r){
A[rt]+=a;
B[rt]+=b;
C[rt]+=c;
return;
}
int m=l+r>>;
if(L<=m) update(L,R,lson,a,b,c);
if(R>m) update(L,R,rson,a,b,c);
}
//询问t小于等于pos的一元二次式的值
ll query(ll t,int l,int r,int rt){
if(l==r){
return A[rt]*t*t+B[rt]*t+C[rt];
}
pushdown(rt);
int m=l+r>>;
if(t<=m) return query(t,lson);
else return query(t,rson);
}
void solve(int x1,int y1,int x2,int y2){
//t如果大于max(x2,y2),那么就是覆盖了整块被子,此时a,b皆为0
update(max(x2,y2)+,maxn,,maxn,,,,(x2-x1)*(y2-y1));
//a为0的状态
if(x2<y2)//t先触碰到右边,那么t在max(x2,y1)+1到y2之间一直是线性增长的
update(max(x2,y1)+,y2,,maxn,,,x2-x1,y1*(x1-x2));
else //t先触碰到上边,那么t在max(x1,y2)+1到x2之间一直是线性增长的
update(max(x1,y2)+,x2,,maxn,,,-y1+y2,x1*(y1-y2));
//最后的情况,三个系数都不是0
if(max(x1,y1)<min(x2,y2))
update(max(x1,y1),min(x2,y2),,maxn,,,-(x1+y1),x1*y1);
}
int main(){
int T,N;
ll x,t;
int x1,y1,x2,y2;
cin >> T;
while(T--){
memset(A,,sizeof A);
memset(B,,sizeof B);
memset(C,,sizeof C); scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
solve(x1,y1,x2,y2);
}
scanf("%lld",&x);
while(x--){
scanf("%lld",&t);
printf("%lld\n",query(t,,maxn,));
}
}
return ;
}

hdu4533 线段树维护分段函数的更多相关文章

  1. 【bzoj3064】Tyvj 1518 CPU监控 线段树维护历史最值

    题目描述 给你一个序列,支持4种操作:1.查询区间最大值:2.查询区间历史最大值:3.区间加:4.区间赋值. 输入 第一行一个正整数T,表示Bob需要监视CPU的总时间. 然后第二行给出T个数表示在你 ...

  2. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  3. 【BZOJ2164】采矿 树链剖分+线段树维护DP

    [BZOJ2164]采矿 Description 浩浩荡荡的cg大军发现了一座矿产资源极其丰富的城市,他们打算在这座城市实施新的采矿战略.这个城市可以看成一棵有n个节点的有根树,我们把每个节点用1到n ...

  4. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  5. 2016shenyang-1002-HDU5893-List wants to travel-树链剖分+线段树维护不同区间段个数

    肯定先无脑树链剖分,然后线段树维护一段区间不同个数,再维护一个左右端点的费用. 线段树更新,pushDown,pushUp的时候要注意考虑链接位置的费用是否相同 还有就是树链剖分操作的时候,维护上一个 ...

  6. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  7. [BZOJ 3995] [SDOI2015] 道路修建 【线段树维护连通性】

    题目链接:BZOJ - 3995 题目分析 这道题..是我悲伤的回忆.. 线段树维护连通性,与 BZOJ-1018 类似,然而我省选之前并没有做过  1018,即使它在 ProblemSet 的第一页 ...

  8. [BZOJ 1018] [SHOI2008] 堵塞的交通traffic 【线段树维护联通性】

    题目链接:BZOJ - 1018 题目分析 这道题就说明了刷题少,比赛就容易跪..SDOI Round1 Day2 T3 就是与这道题类似的..然而我并没有做过这道题.. 这道题是线段树维护联通性的经 ...

  9. HDU3564 --- Another LIS (线段树维护最值问题)

    Another LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. P4315 月下“毛景树”

    P4315 月下"毛景树" 题目描述 毛毛虫经过及时的变形,最终逃过的一劫,离开了菜妈的菜园. 毛毛虫经过千山万水,历尽千辛万苦,最后来到了小小的绍兴一中的校园里. 爬啊爬~爬啊爬 ...

  2. vue props的理解

    vue用了这么久,今天发现父子组件还是傻傻的分不清,不过还好,今天终于搞懂了 vue中到底什么是父组件,什么是子组件 vue之props父子组件之间的谈话 简单的理解就是:使用的地方是父组件,定义的地 ...

  3. CodeForces - 896A Nephren gives a riddle

    A. Nephren gives a riddle time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  4. 【推荐】Nginx基础知识之————多模块(非覆盖安装、RTMP在线人数实例安装测试)

    说明:已经安装好的nginx,需要添加一个未被编译安装的模块,需要怎么弄呢? 具体:这里以安装第三方nginx-rtmp-module和nginx-accesskey-2.0.3模块为例,nginx的 ...

  5. java中数据字典的使用:

    数据字典:数据库中一个字段下存在多个值的情况(type:1:肉类  2:素菜类  3:服装类): 分析: 1:这种情况下往往需要新建一张表来对应type下面的字段,通常以---表名--字段名---字段 ...

  6. 010、base镜像 (2018-12-27 周四)

    参考https://www.cnblogs.com/CloudMan6/p/6799197.html   什么是base镜像       不依赖其他镜像,从scratch构建.或者是其他可以作为基础镜 ...

  7. awk词频统计功能

    [root@test88 ~]# vim word_freq.sh #!/bin/bash if [ $# -ne 1 ];then echo "Usage: $0 filename&quo ...

  8. Struts2_day04

    一.回顾 1什么是值栈 (1)action和servlet区别 2 如何获取值栈对象 3 值栈内部结构 (1)root和context 4 向值栈放数据 (1)向值栈放字符串 (2)向值栈放对象 (3 ...

  9. Syncfusion HTMLUI研究一

    HTMLUI可以加载HTML页面,并且相比WebKit等占用资源特别少 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitiona ...

  10. JavaScript之不规则Table转化为可定点索引td节点的网格矩阵【插件】

    由于解析课程表的缘故,有如下需求: 1. 将任意表格解析成独立的单元格矩阵[本次博文的缘由] 2. 根据矩阵坐标,确定任意一格的节点   /* 表格-->网格化 标记表格的位置及其对应的节点 * ...