IOI早期这么多dp?

题目要求断掉环上的一边,我们可以断环为链,开两倍数组

容易想到dp,设\(f_{i,j}\)为区间\([i,j]\)的最大值,然后就是个枚举断点的区间dp

不过可能会有负数出现,这意味着可能区间中可能会有两个负数相乘得到最大值的情况,所以设\(g_{i,j}\)为区间\([i,j]\)的最小值

转移时记得考虑所有可能情况

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b)) using namespace std;
const int N=100+10;
const LL inf=1e14;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL f[N][N],g[N][N],ans=-inf,an[N],a[N][2],tt;
int n,m; int main()
{
n=rd();
for(int i=1;i<=n;i++)
{
char cc[2];
scanf("%s",cc);
a[i][1]=a[i+n][1]=(cc[0]=='t');
a[i][0]=a[i+n][0]=f[i][i]=f[i+n][i+n]=g[i][i]=g[i+n][i+n]=rd();
}
for(int l=1;l<=n-1;l++)
for(int i=1,j=i+l;j<(n<<1);i++,j++)
{
f[i][j]=-inf,g[i][j]=inf;
for(int k=i+1;k<=j;k++)
{
if(a[k][1])
f[i][j]=max(f[i][j],f[i][k-1]+f[k][j]),
g[i][j]=min(g[i][j],g[i][k-1]+g[k][j]);
else
f[i][j]=max(f[i][j],max(f[i][k-1]*f[k][j],g[i][k-1]*g[k][j])),
g[i][j]=min(g[i][j],min(f[i][k-1]*f[k][j],g[i][k-1]*g[k][j])),
g[i][j]=min(g[i][j],min(f[i][k-1]*g[k][j],g[i][k-1]*f[k][j]));
}
//printf("%d %d %lld %lld\n",i,j,f[i][j],g[i][j]);
}
for(int i=1;i<=n;i++)
if(ans<f[i][i+n-1]) ans=f[i][i+n-1],an[tt=1]=i;
else if(ans==f[i][i+n-1]) an[++tt]=i;
printf("%lld\n",ans);
for(int i=1;i<=tt;i++) printf("%lld ",an[i]);
return 0;
}

luogu P4342 [IOI1998]Polygon的更多相关文章

  1. P4342 [IOI1998]Polygon

    题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条边 ...

  2. 洛谷 P4342 [IOI1998]Polygon

    题目传送门 解题思路: 一道环形dp,只不过有个地方要注意,因为有乘法,两个负数相乘是正数,所以最小的数是负数,乘起来可能比最大值大,所以要记录最小值(这道题是紫题的原因). AC代码: #inclu ...

  3. IOI1998 Polygon [区间dp]

    [IOI1998]Polygon 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘 ...

  4. [IOI1998]Polygon(区间dp)

    [IOI1998]Polygon 题意翻译 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条 ...

  5. 【洛谷P4342】[IOI1998]Polygon

    Polygon 比较裸的环形DP(也可以说是区间DP) 将环拆成链,复制到后面,做区间DP即可 #include<iostream> #include<cstdio> usin ...

  6. 【洛谷 P4342】[IOI1998]Polygon(DP)

    题目链接 题意不再赘述. 这题和合并石子很类似,但是多了个乘法,而乘法是不满足"大大得大"的,因为两个非常小的负数乘起来也会很大,一个负数乘一个很大的整数会很小,所以我们需要添加一 ...

  7. POJ 1179 IOI1998 Polygon

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5472   Accepted: 2334 Description Polyg ...

  8. [IOI1998]Polygon

    很早就看到这题了...但因为有个IOI标志,拖到现在才做 由于是以前在书上看到的,就没有想过其他算法,直接区间DP了... 方程式也挺好想的 跟我们平时做数学题求几个数乘积最大差不多 最大的*最大的 ...

  9. [IOI1998] Polygon (区间dp,和石子合并很相似)

    题意: 给你一个多边形(可以看作n个顶点,n-1条边的图),每一条边上有一个符号(+号或者*号),这个多边形有n个顶点,每一个顶点有一个值 最初你可以把一条边删除掉,这个时候这就是一个n个顶点,n-2 ...

随机推荐

  1. js 算數(Math)對象

    算數對象不需要聲明,可以直接使用, Math對象方法及作用: round()四捨五入: random()生成0到1的隨機數: max()選擇較大的數: min()返回較小的數:

  2. Bootstrap滚动监控器

    前面的话 滚动监听插件是用来根据滚动条所处的位置来自动更新导航项的.滚动导航条下面的区域并关注导航项的变化,下拉菜单中的条目也会自动高亮显示.本文将详细介绍Bootstrap滚动监控器 基本用法 滚动 ...

  3. webapi 405 method not allowed

    问题的原因:创建webapi controller时,习惯创建了mvc的controller,而非api controller.导致引用包有问题. 这两天搞webapi开发的时候,遇见了405错误. ...

  4. c# 对象存cookie

    下载并引用Newtonsoft.Json.dll 对象转json,然后存cookies string xxx= Newtonsoft.Json.JsonConvert.SerializeObject( ...

  5. 【BZOJ3668】【NOI2014】起床困难综合症(贪心)

    [NOI2014]起床困难综合症(贪心) 题面 Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚 ...

  6. 洛谷 P3237 [HNOI2014]米特运输 解题报告

    P3237 [HNOI2014]米特运输 题目描述 米特是\(D\)星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. \(D\)星上有 ...

  7. ubuntu 14.04下使用fcitx时将caps lock映射为ctrl

    在~/.xprofile中加入 setxkbmap -option caps:ctrl_modifier 要弄成全局的就在 /etc/X11/Xsession.d/ 里面找个文件塞进去. archli ...

  8. luogu1979 华容道 (dijkstra+bfs)

    我想动某个点的话,一定要先把空白点移动到这个点旁边,然后调换这个点和空白点,一直重复 那么,我们就可以记一些状态(x,y,s) (s={0,1},{0,-1},{1,0},{-1,0}),表示我要动的 ...

  9. Ubuntu中让归档管理器支持rar和7z格式

    由于版权等原因,Linux系统不能直接支持rar和7z,需要手动安装第三方工具. rar支持 sudo apt install unrar 7z支持 sudo apt install p7zip-fu ...

  10. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...