1079 延迟的回文数(20 分)

给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0。N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i​​。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.

输入样例 1:

97152

输出样例 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:

196

输出样例 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
// ConsoleApplication1.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include<iostream>
#include<string> using namespace std; //判断是否为回文数
bool isPalindromicNumber(string str)
{
int rear = str.size()-; for (int i = ; i < str.size() / ; ++i)
if (str[i] != str[rear - i])
return false; return true;
} //获取逆序的数
void getReverseNumber(string &str1,char *str2)
{
int size = str1.size();
for (int i = size - ; i >= ; --i)
str2[size - i - ] = str1[i]; str2[size] = '\0';
} //获取相加之后的值并存入str1
void addValue(string &str1, char *str2)
{
int len = str1.size(); for (int i = len - ; i > ; --i)
{
if (str1[i] + str2[i] > )//str1+str2 -48 >57(9)
{
str1[i - ] += ;
str1[i] += str2[i] - ;
}
else
str1[i] += str2[i] - ;
} //处理第一位相加进位的情况
if (str1[] + str2[] > )
{
str1[] += str2[] - ;
str1.insert(str1.begin(), '');
}
else
str1[] += str2[] - ;
} int main()
{
string str1;
char str2[];
int flag = ; getline(cin,str1); while (flag--)
{
if (!isPalindromicNumber(str1))//不是回文数
{
getReverseNumber(str1, str2);
cout << str1 << " + " << str2 << " = ";
addValue(str1, str2);
cout << str1 << endl;
}
else
{
cout << str1 << " is a palindromic number." << endl;
return ;
}
} cout << "Not found in 10 iterations." << endl; return ;
}
 

PAT 乙级 1079 延迟的回文数(20 分)的更多相关文章

  1. PAT Baisc 1079 延迟的回文数 (20 分)

    给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0 且 a​k​​>0.N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i ...

  2. PAT(B) 1079 延迟的回文数(Java)

    题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 ...

  3. PAT 1079. 延迟的回文数

    PAT 1079. 延迟的回文数 给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0.N 被称为一个回 ...

  4. PAT 1079 延迟的回文数(代码+思路)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  5. 【PAT】B1079 延迟的回文数(20 分)

    用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...

  6. P1079 延迟的回文数

    P1079 延迟的回文数 转跳点:

  7. PAT乙级:1087 有多少不同的值 (20分)

    PAT乙级:1087 有多少不同的值 (20分) 当自然数 n 依次取 1.2.3.--.N 时,算式 ⌊n/2⌋+⌊n/3⌋+⌊n/5⌋ 有多少个不同的值?(注:⌊x⌋ 为取整函数,表示不超过 x ...

  8. PAT (Advanced Level) Practice 1019 General Palindromic Number (20 分) (进制转换,回文数)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  9. hdu1282回文数猜想

    Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...

随机推荐

  1. PTA——时间转换

    PTA 7-14 然后是几点 #include<stdio.h> int main() { int a,b,hour,min; scanf("%d%d",&a, ...

  2. Go Example--缓存通道

    package main import "fmt" func main() { //缓存通道 msg := make(chan string,2) msg <- " ...

  3. shell dict 操作

    shell 读取文件,利用dict 合并第一列 . #!/bin/bash result_file="a" declare -A mydict total=`cat ${resul ...

  4. MySQL--查看内存信息

    常见查看内存信息命令 ## 使用free -m命令查看 free -m ## 使用cat /proc/meminfo 查看 cat /proc/meminfo ## 使用dmidecode命令查看 d ...

  5. skipper filter 扩展开发

    skipper 的扩展包含filter类型的,以及Predicates ,当然script(lua)脚本也是 这次主要是filter类型的开发 filter 接口约定 格式 filter 至少需要包含 ...

  6. The key of real time embedded system

    对于实时嵌入式系统来说,最重要的是每一个进程所需时间的可检测性,可预测性.要不你的实时性是没有办法保证的.有些时候你对一些没有从事过嵌入式开发的人谈这个进程(TASK)设计是按8ms被调度一次,他们会 ...

  7. 数学的语言 化无形为可见 (Keith Devlin 著)

    第一章 数字为何靠的住 (已看) 第二章 心智的模式 (已看) 第三章 动静有数 (已看) 第四章 当数学成型 (已看) 第五章 数学揭开美之本质 (已看) 第六章 当数学到位 (已看) 第七章 数学 ...

  8. Sql server日期函数用法

    SQL日期函数 SQL日期函数中的类型码可以为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 ,20,21,22,23,24,25,100,101,102,103,104,105 ...

  9. 嵌入式LINUX设置时间

    date -s "2018-12-15 08:55:00" 安装NTP从网络获取时间 基于Linux的嵌入式开发,需要用到本地的时间,但是网上找了很多修改时间的命令,但大多是Lin ...

  10. 怎么控制contenteditable的输入

    contenteditable是所有流浪器都支持的属性, 可以利用标签模拟文本域, 实现体验相当不错的内容跟着高度自动增高的体验, 但是也带来一些问题, 就是可以直接复制带有style样式的标签进去 ...