BZOJ 3622 已经没有什么好怕的了
扯淡
看到题目想到二项式反演
然后忘了给求阶乘的时候取模,调了一晚上
真令人窒息
思路
二项式反演
首先二项式反演还有另一种形式(不会证)
设\(G_i\)为有至少i个的方案数量,\(F_i\)为恰好有i个的方案数量
则有以下形式:
\]
所以套入本题
设\(F_i\)为恰好i对糖果比药片能量多的方案数,\(G_i\)为至少i对糖果比药片能量多的方案数
则可以对\(G_i\)dp求解
\(dp_{i,j}\)表示前i个,j对糖果比药片能量多的方案数,\(L_i\)是药片和糖果能量均从小到大排序后,最后一个能量小于第i个糖果的药片的标号,则\(G_i=dp_{n,i}\times(n-i)!\),原因显然,j对之后剩下的随便排列即可,所以乘上阶乘
dp方程是
\]
然后二项式反演即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int a[3000],b[3000],dp[3000][3000],jc[3000],g[3000],inv[3000],n,k,t;
const int MOD = 1000000009;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*a*ans)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans%MOD;
}
int C(int n,int m){
return 1LL*jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
signed main(){
scanf("%lld %lld",&n,&k);
if((n+k)%2){
printf("0\n");
return 0;
}
t=(n+k)/2;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=1;i<=n;i++)
scanf("%lld",&b[i]);
sort(a+1,a+n+1);
sort(b+1,b+n+1);
int lastpos=0;
dp[0][0]=1;
for(int i=1;i<=n;i++){
dp[i][0]=dp[i-1][0];
for(int j=1;j<=i;j++){
for(;b[lastpos]<a[i]&&lastpos<=n;lastpos++);
lastpos--;
dp[i][j]=(1LL*dp[i-1][j]+1LL*dp[i-1][j-1]*max(lastpos-j+1,0LL)%MOD)%MOD;
}
}
jc[0]=1;
inv[0]=1;
for(int i=1;i<=n;i++){
jc[i]=1LL*jc[i-1]*i%MOD;
inv[i]=pow(jc[i],MOD-2);
}
for(int i=0;i<=n;i++)
g[i]=1LL*dp[n][i]*jc[n-i]%MOD;
int ans=0;
for(int i=t;i<=n;i++)
ans=(ans+1LL*(((i-t)%2)?-1:1)*C(i,t)*g[i]%MOD)%MOD;
printf("%lld\n",(ans%MOD+MOD)%MOD);
return 0;
}
BZOJ 3622 已经没有什么好怕的了的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)
题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- ●BZOJ 3622 已经没有什么好害怕的了
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- 【BZOJ 3622】3622: 已经没有什么好害怕的了(DP+容斥原理)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 683 Solved: 328 Description Input ...
- [BZOJ 3622]已经没有什么好害怕的了
世萌萌王都拿到了,已经没有什么好害怕的了—— (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗? (作大死) 这 ...
随机推荐
- Day8 面向对象
一.面向对象和面向过程 各位,我们现在如果要将大象放冰箱,用面向过程怎么实现呢? 1.把大象放到冰箱里 第一步:把冰箱门打开 第二步:把大象放进去 第三步:把门关上 def open_fridge_d ...
- clientWidth,offsetWidth,scrollWidth区别
<html> <head> <title>clientWidth,offsetWidth,scrollWidth区别</title> </head ...
- maven 常用 Archetypes
maven 常用 Archetypes Archetypes简介 什么是原型? 简而言之,Archetype是一个Maven项目模板工具包.原型被定义为原始模式或模型,从中创建所有其他相同类型的东西. ...
- arc 092D Two Sequences
题意: 给出两个长度N相同的整数序列A和B,有N^2种方式从A中选择一个数Ai,从B中选择一个数Bj,让两个数相加,求这N^2个数的XOR,即异或. 思路: 暴力的求显然是会超时的,因为是异或,就考虑 ...
- Hive分区表新增字段及修改表名,列名,列注释,表注释,增加列,调整列顺序,属性名等操作
一.Hive分区表新增字段 参考博客:https://blog.csdn.net/yeweiouyang/article/details/44851459 二.Hive修改表名,列名,列注释,表注释, ...
- Linux基础命令---pgrep
pgrep pgrep指令可以按名字或者其他属性搜索指定的进程,显示出进程的id到标准输出. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedo ...
- 前端框架VUE----node.js的简单介绍
一.什么是node.js? 它是可以运行JavaScript的服务平台,可以吧它当做一门后端程序,只是它的开发语言是JavaScript 二.安装 1.node.js的特性: - 非阻塞IO模型 - ...
- 怎样从外网访问内网Web?
本地部署了一个Web服务端,只能在局域网内访问,怎样从外网也能访问到本地的Web服务呢?本文将介绍具体的实现步骤. 准备工作 部署并启动Web服务程序 默认部署的Web服务端口是8080. 实现步骤 ...
- Source Insight 如何将script等文件加入
点击菜单栏Options -> Document Options , 然后再弹出的对话框中找到File filter,文件过滤的设置,里面肯能有*.c;*.h 你在后面添加Makefile,注意 ...
- Solr创建核的方法
Solr创建核的方法,简单粗暴 就是进入到solrhome中进行复制粘贴这个collection2 然后进入到conf中,修改一下name 然后从新启动tomcat