LOJ#2452. 「POI2010」反对称 Antisymmetry
题目描述
对于一个 \(0/1\) 字符串,如果将这个字符串 \(0\) 和 \(1\) 取反后,再将整个串反过来和原串一样,就称作「反对称」字符串。比如 \(00001111\) 和 \(010101\) 就是反对称的,而 \(1001\) 就不是。
现在给出一个长度为 \(n\) 的 \(0/1\) 字符串,求它有多少个子串是反对称的,注意这里相同的子串出现在不同的位置会被重复计算。
输入格式
第一行一个正整数 \(n\) 。
第二行一个长度为 \(n\) 的 \(0/1\) 字符串。
输出格式
一行一个整数,表示原串的反对称子串个数。
样例
样例输入
8
11001011
样例输出
7
数据范围与提示
对于 \(100\%\) 的数据, \(1\le n\le 500\ 000\) 。
Translated by vincent163
题解
马拉车也是可以做的而且复杂度更优。
我还是菜啊没有看出来单调性,这个取反翻转操作是单调的,你一个大的串如果是反对称串,中间的任何一个也肯定是。因为翻转的位置并没有变...
那么枚举起点,二分子串长度判断即可。
因为取反后翻转这个操作,所以不可能有奇数串符合条件(奇数串取反后翻转了一定不相等),所以判断也很好写
然后比较坑的就是答案要用longlong存,我因为这个爆了好几发,一开始还以为是进制数选的不好。
复杂度\(O(nlogn)\)
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int N = 500010;
const ull base = 13131;
ull h1[N], h2[N], p[N];
int n;
ll ans = 0;
char s[N];
ull get_h1(int l, int r) { return h1[r] - h1[l - 1] * p[r - l + 1]; }
ull get_h2(int l, int r) { return h2[l] - h2[r + 1] * p[r - l + 1]; }
int check(int x) {
int l = 1, r = min(x, n - x);
while(l <= r) {
int mid = (l + r) >> 1;
if(get_h1(x - mid + 1, x) == get_h2(x + 1, x + mid)) l = mid + 1;
else r = mid - 1;
}
return r;
}
int main() {
scanf("%d%s", &n, s + 1); p[0] = 1;
for(int i = 1; i <= n; ++i) p[i] = p[i - 1] * base, h1[i] = h1[i - 1] * base + (ull)s[i];
for(int i = n; i; --i) h2[i] = h2[i + 1] * base + (ull)(s[i] == '0' ? s[i] + 1 : s[i] - 1);
for(int i = 1; i < n; ++i) ans += check(i);
printf("%lld\n", ans);
}
LOJ#2452. 「POI2010」反对称 Antisymmetry的更多相关文章
- 「POI2010」反对称 Antisymmetry (manacher算法)
# 2452. 「POI2010」反对称 Antisymmetry [题目描述] 对于一个 $0/1$ 字符串,如果将这个字符串 $0$ 和 $1$ 取反后,再将整个串反过来和原串一样,就称作「反对称 ...
- LOJ#2427. 「POI2010」珍珠项链 Beads
题目地址 题目链接 题解 不会算复杂度真是致命,暴力枚举k每次计算是n/2+n/3+n/4+...+1的,用调和级数算是\(O(nlogn)\)的... 如果写哈希表的话能够\(O(nlogn)\), ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
随机推荐
- timestamp与timedelta,管理信息系统概念与基础
1.将字符串‘2017年10月9日星期一9时10分0秒 UTC+8:00’转换为timestamp. 2.100天前是几号? 今年还有多少天? #timestamp与timedelta from ...
- 从零开始学习MVC
其实在学校时,已经开设了MVC这门课程,教材由授课老师自己编纂,是和微软的音乐商店相似的一个书店项目,当时无法理解 Linq.Lambda , 只记得是按照老师的方法,复制+粘贴,不明其意,亦不知其理 ...
- Lua逻辑操作符
[1]逻辑操作符and.or和not 应用示例: ) ) -- nil ) -- false ) ) ) ) ) ) ) print(not nil) -- ture print(not false) ...
- (2018干货系列八)最新VR学习路线整合
怎么学VR 即虚拟现实技术,是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的.交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中.VR/AR/ ...
- TensorFlow 分布式实践
此wiki主要介绍分布式环境使用的一些条件,一直所要注意的内容: 确保在此之前阅读过TensorFlow for distributed 1.集群描述 当前tensorflow 的版本(0.8.0), ...
- Django框架----权限管理(设计分析以及具体细节)
说起权限我们大家都知道,不一样的角色会有不一样的权限.比如就像学生管理系统一样,管理员,老师,学生之间的权限都是不一样的,那么展示的页面也是不一样的.所以,我们现在来看看具体操作. 目标:生成一个独立 ...
- css相关知识点
一.CSS的引入方式 1.1 css的介绍 HTML:超文本标记语言.从语义的角度描述页面结构. CSS:层叠样式表.从审美的角度负责页面样式. JS:JavaScript .从交互的角度描述页面行为 ...
- Servlet上传下载
下面是一个jsp页面(method和enctype必须要有) //页面<form action="file?file=upLoadByjs" method="pos ...
- 深度估计&平面检测小结
https://yq.aliyun.com/ziliao/582885 最近一段时间已知忙着赶图像分析与理解的项目,在三个星期内强行接触了CNN,MRF,Caffe,openCV在内的很多东西.现在项 ...
- Android几种解析XML方式的比较
https://blog.csdn.net/isee361820238/article/details/52371342 一.使用SAX解析XML SAX(Simple API for XML) 使用 ...