这道题还是关于数位DP的板子题

数位DP有一个显著的特征,就是求的东西大概率与输入关系不大,理论上一般都是数的构成规律

然后这题就是算一个\( F(A) \)的公式值,然后求\( \left [ 0 ,  B \right ] \)区间内\( F(x) \)不大于\( F(A) \)的数的个数

所以由数据范围很容易得到计算出最大值不会超过4600

然后我们设状态\( dp[10][4600][4600] \)表示不同\( F(A) \)取值下的第\( pos \)个位置的值总和为 \( sumx \)的 数的个数

显然会MLE

这时候可以用减法转换状态

用\( dp[10][4600] \)表示到了第\( pos \)个位置,还要凑\( sumx \)的值的数的个数

然后就可以发现一个现象,这个状态与\( F(A) \)无关的

然后就可做了

注意一个事情,就是求的是不大于\( F(A) \)的数的个数

所以最后\( sumx \ge 0 \)就是合法状态了

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int dp[][],a[];
int dfs(int pos,int limit,int state){
if(state<)
return ;
if(pos==-){
return state>=;
}
if(!limit&&dp[pos][state]!=-)
return dp[pos][state];
int mid=,up=limit?a[pos]:;
for(int i=;i<=up;i++){
if((i<<(pos))<=state)
mid+=dfs(pos-,limit&&i==a[pos],state-(i<<(pos)));
}
if(!limit)
dp[pos][state]=mid;
return mid;
}
int solve(int A,int x){
int fa=,cona=;
while(A){
fa+=((A%)<<(cona));
A/=;
cona++;
}
int con=;
memset(a,,sizeof(a));
while(x){
a[con]=x%;
x/=;
con++;
}
return dfs(con-,true,fa);
}
int main(){
int T;
memset(dp,-,sizeof(dp) );
scanf("%d",&T);
for(int i=;i<=T;i++){
int A,B;
scanf("%d %d",&A,&B);
printf("Case #%d: %d\n",i,solve(A,B));
}
return ;
}

题解——HDU 4734 F(x) (数位DP)的更多相关文章

  1. HDU 4734 F(x) ★(数位DP)

    题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...

  2. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

  3. 【数位DP】 HDU 4734 F(x)

    原题直通车:HDU 4734 F(x) 题意:F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1, 求0.....B中F[x]<=F[A ...

  4. HDU 2089 - 不要62 - [数位DP][入门题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 Time Limit: 1000/1000 MS (Java/Others) Memory Li ...

  5. HDU 6156 - Palindrome Function [ 数位DP ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    普通的数位DP计算回文串个数 /* HDU 6156 - Palindrome Function [ 数位DP ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 2-36进制下回文串个数 */ ...

  6. HDU 4734 F(x) (2013成都网络赛,数位DP)

    F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  8. HDU 4734 F(x) 2013 ACM/ICPC 成都网络赛

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4734 数位DP. 用dp[i][j][k] 表示第i位用j时f(x)=k的时候的个数,然后需要预处理下小 ...

  9. HDU 5787 K-wolf Number 数位DP

    K-wolf Number Problem Description   Alice thinks an integer x is a K-wolf number, if every K adjacen ...

随机推荐

  1. sql server得到某个数据库的所有表和所有字段

    select b.name tablename,a.name as columnnamefrom sys.columns a,sys.objects b,sys.types cwhere a.obje ...

  2. SiteCore Experience Analytics-体验分析

    体验分析   Sitecore Experience Analytics为营销人员和营销分析师提供仪表板和报告,以识别从其网站和可能的其他外部数据源收集的体验数据的模式和趋势. 体验分析报告示例:   ...

  3. 【爬虫】biqukan抓取2.0版

    #!python3.7 import requests,sys,time,logging,random from lxml import etree logging.basicConfig(level ...

  4. Jmeter下进行ip伪造

    转至https://blog.csdn.net/xingchao416/article/details/53506051 1.首先获取一些闲置的ip地址,且必须为固定地址,不能是自动获取的地址,方法: ...

  5. python的print函数自动换行及其避免

    print函数自带换行功能,即在输出内容后会自动换行,但是有时我们并不需要这个功能,那怎么办呢?这时候就需要用到end这个参数了,使用方法参考下面这段打印$矩阵的代码: i = 1 while i&l ...

  6. svn安装使用

    SVN安装使用 获取项目 1.首先新建文件夹.如:测试项目. 2.接着鼠标右键选择:SVN Checkout/SVN 检出 3.在出行的对话框中输入仓库地址.如:svn://198.021.262/2 ...

  7. 20165316 技能学习心得与c语言学习

    20165316 技能学习心得与c语言学习 一.技能学习经验 我会打乒乓球,在中国,我只能说我"会"打,至于"比大多数人更好"我不敢断言,因为我无时无刻不感受到 ...

  8. vue使用tradingview开发K线图相关问题

    vue使用tradingview开发K线图相关问题 1.TradingView中文开发文档https://b.aitrade.ga/books/tradingview/CHANGE-LOG.html2 ...

  9. Andriod post Api与返回值

    vs后台api控制器  post接收参数----HttpContext.Current.Request.Params["account"].ToString() 返回值为对象返回, ...

  10. java.lang.IllegalStateException: Failed to check the status of the service

    java.lang.IllegalStateException: Failed to check the status of the service com.pinyougou.sellergoods ...