HDU 4320 Arcane Numbers 1(质因子包含)
http://acm.hdu.edu.cn/showproblem.php?pid=4320
题意:
给出A,B,判断在A进制下的有限小数能否转换成B进制下的有限小数。
思路:
这位博主讲得挺不错的http://blog.csdn.net/dgq8211/article/details/7971960。
我就直接引用了吧。。。
显然若 n 为整数,一定可以,那么我们下面分析一下 n 含小数的情况。
设 n 的小数部分为 x,且小数部分共 k 位,第 i 位上的数字为 ai。
那么我们可以将 x 表示成下面式子的形式:
。
而在进制转化中,整数部分是“除基倒取余”,小数部分是“乘基正取整”,且乘到小数部分为0时截止。
于是问题转化成了 x 在什么时候小数部分“乘基”一定会变成0。
由 x 的表达式我们可知,当且仅当乘数中含有 p^k 这个因子时,x 的小数部分才为0。
那么就相当于判断 q^h 中是否含有 p^k 这个因子(h 可无限大)。
又由算术基本定理,p^k 中的质因子一定和 p 中的相同。
所以只要 q 中包含 p 的所有质因子,就必定存在 h 使得 q^h 中包含 p^k 这个因子,从而使问题有解。
那么,如何判断 q 中是否包含 p 的所有质因子呢?
1、若 p 和 q 不互质,则只需要判断 q 中是否包含 p/gcd(p,q) 的所有质因子。
2、若 p 和 q 互质,当且仅当 p = 1 时,q 中包含 p 的所有质因子。
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll; ll gcd(ll a, ll b)
{
return b==?a:gcd(b,a%b);
} int main()
{
//freopen("in.txt","r",stdin);
int T;
int kase = ;
scanf("%d",&T);
while(T--)
{
ll a,b,t;
scanf("%lld%lld",&a,&b);
while((t=gcd(a,b))!=) a/=t;
printf("Case #%d: ",++kase);
if(a==) puts("YES");
else puts("NO");
}
return ;
}
HDU 4320 Arcane Numbers 1(质因子包含)的更多相关文章
- HDU 4320 Arcane Numbers 1 (质因子分解)
题目:传送门. 题意:将一个A进制下的有限小数转化为B进制看是否仍为有限小数. 题解:一个A进制的小数可以下次 左移动n位变成A进制整数然后再将其转化为B进制即可 即B^m/A^n要整除,因此A的质因 ...
- HDU 4320 Arcane Numbers 1 (数论)
A - Arcane Numbers 1 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- 数论(GCD) HDOJ 4320 Arcane Numbers 1
题目传送门 题意:有一个A进制的有限小数,问能否转换成B进制的有限小数 分析:0.123在A进制下表示成:1/A + 2/(A^2) + 3 / (A^3),转换成B进制就是不断的乘B直到为0,即(1 ...
- HDU 4321 Arcane Numbers 2
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4321 ----------------------------------------------- ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- hdu 5428 质因子
问题描述有一个数列,FancyCoder沉迷于研究这个数列的乘积相关问题,但是它们的乘积往往非常大.幸运的是,FancyCoder只需要找到这个巨大乘积的最小的满足如下规则的因子:这个因子包含大于两个 ...
- HDU 4135 Co-prime (容斥+分解质因子)
<题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...
- Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)
题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...
- Arcane Numbers 1
Vance and Shackler like playing games. One day, they are playing a game called "arcane numbers& ...
随机推荐
- flask请求钩子、HTTP响应、响应报文、重定向、手动返回错误码、修改MIME类型、jsonify()方法
请求钩子: 当我们需要对请求进行预处理和后处理时,就可以用Flask提供的回调函数(钩子),他们可用来注册在请求处理的不同阶段执行的处理函数.这些请求钩子使用装饰器实现,通过程序实例app调用,以 b ...
- Linux基础命令---netstat显示网络状态
netstat netstat指令可以显示当前的网络连接.路由表.接口统计信息.伪装连接和多播成员资格等信息. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.open ...
- bzoj4448 情报传递
题目链接 离线+树上主席树,主席树维护时间标记 注意查询时如果c<0要把c赋为0: #include<iostream> #include<cstdio> #includ ...
- Autel MaxiSYS PRO MS908P Diagnostic System with Wireless VCI J-2534
You’re a professional mechanic, an enthusiast or and mechanic shop owner? Then you are here on the r ...
- QT开发基础教程
http://www.qter.org/portal.php?mod=view&aid=11
- MyEclipse/Eclipse快捷键总结
MyEclipse/Eclipse快捷键 查找某个方法被谁调用:选中方法名,ctrl+shift+g 通过文件名称查找类或文件:ctrl+shift+r(Open Resource)
- Redis Desktop Manager连接Redis
1.注释redis.conf文件中的:bind 127.0.0.1修改为自己的IP 2.ifconfig查看自己的虚拟机ip 3.拿到IP后,返回Windows,开启cmd,通过telnet命令,测试 ...
- bzoj4566 / P3181 [HAOI2016]找相同字符
P3181 [HAOI2016]找相同字符 后缀自动机 (正解应是广义后缀自动机) 并不会广义后缀自动机. 然鹅可以用普通的后缀自动机. 我们先引入一个问题:算出从一个串内取任意两个不重合子串完全 ...
- eclipse maven Errors while generating javadoc on java8
With JDK 8, we are unable to get Javadoc unless your tool meets the standards of doclint. Some of it ...
- 为什么不应该使用ZooKeeper做服务发现
[编者的话]本文作者通过ZooKeeper与Eureka作为Service发现服务(注:WebServices体系中的UDDI就是个发现服务)的优劣对比,分享了Knewton在云计算平台部署服务的经验 ...