There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
4
1 2
1 3
2 4
output
1.500000000000000
input
5
1 2
1 3
3 4
2 5
output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.


  题目大意 给定一棵有n个节点的树,某个人骑着一匹等概率走向任意相连的未经过节点的马从1号点开始旅行,当到某个点的无法移动旅行结束。求期望的旅行长度(每条边的长度为1)。

  显然到了某个点就不能到它的父节点。所以考虑动态规划。

  f[i]表示当到达节点i后,期望还能走的步数。显然某个叶节点的f值为0.

  现在考虑转移。

  显然是每个子节点的f值加1再乘走到这个节点的概率。

Code

 /**
* Codeforces
* Problem#839C
* Accepted
* Time: 78ms
* Memory: 11800k
*/
#include <bits/stdc++.h>
using namespace std; int n;
vector<int> *g;
double *f; inline void init() {
scanf("%d", &n);
g = new vector<int>[(n + )];
f = new double[(n + )];
for(int i = , u, v; i < n; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} void dfs(int node, int fa) {
f[node] = ;
int count = ;
for(int i = ; i < (signed)g[node].size(); i++)
if(g[node][i] != fa)
count++;
if(!count) return;
double P = 1.0 / count;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa) continue;
dfs(e, node);
f[node] += (f[e] + ) * P;
}
} inline void solve() {
printf("%.12lf", f[]);
} int main() {
init();
dfs(, );
solve();
return ;
}

Codeforces 839C Journey - 树形动态规划 - 数学期望的更多相关文章

  1. CodeForces 839C - Journey | Codeforces Round #428 (Div. 2)

    起初误以为到每个叶子的概率一样于是.... /* CodeForces 839C - Journey [ DFS,期望 ] | Codeforces Round #428 (Div. 2) */ #i ...

  2. Codeforces 839C Journey【DFS】

    C. Journey time limit per test:2 seconds memory limit per test:256 megabytes input:standard input ou ...

  3. Codeforces 1000G Two-Paths 树形动态规划 LCA

    原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...

  4. Codeforces Round #259(div2)C(数学期望)

    数学题. 关键是求最大值为k时有多少种情况,结果是kn-(k-1)n-1.可以这么想:每一次都从1至k里选,共kn种,这里需要再减去每一次都从1至k-1里面选的情况.当然也可以分类计数法:按出现几次k ...

  5. CodeForces Div1: 995 D. Game(数学期望)

    Allen and Bessie are playing a simple number game. They both know a function f:{0,1}n→Rf:{0,1}n→R, i ...

  6. [Codeforces 839C] Journey

    [题目链接] http://codeforces.com/contest/839/problem/C [算法] 概率DP 时间复杂度 : O(N) [代码] #include<bits/stdc ...

  7. Codeforces 912 质因数折半 方格数学期望

    A B #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #d ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

随机推荐

  1. Linux之HugePages快速配置

    关于Linux系统的HugePages与Oracle数据库优化,可以参考熊爷之前的文章,相关概念介绍的非常清晰: Linux大内存页Oracle数据库优化 本文旨在Linux系统上快速配置HugePa ...

  2. 在PHP5.3以上版本运行ecshop出现的问题及解决方案

     ecshop 问题一:商城首页报错 Strict Standards: Only variables should be passed by reference in D:\wamp\ecshop\ ...

  3. obv15 案例4,待日后分析

    obv

  4. java资料共享

    1.javascript视频教程 链接: http://pan.baidu.com/s/1gd57FVH 密码: d9ei 2.JPA视频教程 链接: http://pan.baidu.com/s/1 ...

  5. caffe在Linux下生成均值文件

    参照博客:https://blog.csdn.net/sinat_28519535/article/details/78533319

  6. ubuntu安装mysql,redis,python-mysqldb

    sudo apt-get install mysql-server sudo apt-get install redis-server sudo apt-get install python-redi ...

  7. Sitecore CMS中更改项目的模板

    如何在Sitecore CMS中创建项目后更改项目的模板. 在创建项目时选择了错误的模板,或者创建了新模板并将现有项目更新为新模板时,这非常有用.   警告! 更改模板时要小心.如果原始模板具有不在新 ...

  8. Maven的作用、用途、内涵、愿景

    maven被许多人认为是一个构建工具.许多人最初是从熟悉ant而转到maven的,因此很自然地这样认为maven是一个构建工具.但是maven并不仅仅是一个构建工具,也不是ant的一个替代工具.mav ...

  9. caffe生成voc格式lmdb

    要训练ssd基本都是在liu wei框架下改,生成lmdb这一关照葫芦画瓢总遇坑,记录之: 1. labelmap_voc.prototxt要根据自己的分类修改,比如人脸检测改成这样: item { ...

  10. tomcat 、NIO、netty 本质

    tomcat 基于 Socket,面向 web 浏览器的通信容器 nio 同步非阻塞的I/O模型 netty 通信框架,对 nio 的封装