BZOJ3861 : Tree
把集合看成左边的点,图中的点看成右边的点,若集合$i$不包含$j$,则连边$i->j$,得到一个二分图,等价于求这个二分图的完备匹配个数。
设$f[i][j]$表示考虑了前$i$个集合,匹配了$j$个集合的方案数。
转移则是枚举当前集合是否匹配,然后设$g[i][j]$表示考虑了前$i$个内部点,匹配了$j$个集合的方案数。
最后方案数再除以每种集合出现次数的阶乘即可。
时间复杂度$O(n^2)$。
#include<cstdio>
#include<algorithm>
const int N=1010,P=1000000007;
int T,n,i,j,k,x,a[N],s[N],v[N],f[N][N],g[N][N],inv[N];unsigned long long h[N],w[N];
inline void up(int&a,int b){a+=b;if(a>=P)a-=P;}
int solve(){
for(i=1;i<=n;i++)v[i]=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]),s[i]=s[i-1]+a[i];
for(w[i]=j=0;j<a[i];j++)scanf("%d",&x),w[i]^=h[x],v[x]++;
}
for(i=1;i<=n;i++)if(v[i]!=1)return 0;
std::sort(w+1,w+n+1);
for(f[1][0]=i=1;i<=n;i=j){
for(j=i;j<=n&&w[i]==w[j];j++);
f[1][0]=1LL*f[1][0]*inv[j-i]%P;
}
for(i=2;i<=n;i++){
for(j=0;j<=i;j++)g[0][j]=f[i-1][j];
for(j=1;j<=a[i];j++)for(k=0;k<=i;k++)g[j][k]=0;
for(j=1;j<=a[i];j++)for(k=0;k<=i;k++)if(g[j-1][k]){
if(k<i)up(g[j][k+1],1LL*g[j-1][k]*(i-1-k)%P);
up(g[j][k],g[j-1][k]);
}
for(j=0;j<=i;j++)f[i][j]=g[a[i]][j],g[0][j]=1LL*f[i-1][j]*(s[i-1]-j)%P;
for(j=1;j<=a[i];j++)for(k=0;k<=i;k++)g[j][k]=0;
for(j=1;j<=a[i];j++)for(k=0;k<=i;k++)if(g[j-1][k]){
if(k<i)up(g[j][k+1],1LL*g[j-1][k]*(i-1-k)%P);
up(g[j][k],g[j-1][k]);
}
for(j=1;j<=i;j++)up(f[i][j],g[a[i]][j-1]);
}
return f[n][n];
}
int main(){
for(i=1;i<N;i++)h[i]=h[i-1]*233+17;
for(inv[0]=inv[1]=1,i=2;i<N;i++)inv[i]=1LL*(P-inv[P%i])*(P/i)%P;
for(i=1;i<N;i++)inv[i]=1LL*inv[i]*inv[i-1]%P;
while(~scanf("%d",&n)){
if(!n)return 0;
printf("Case #%d: %d\n",++T,solve());
}
}
BZOJ3861 : Tree的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
- 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode 笔记 101 - Symmetric Tree
题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...
随机推荐
- eclipse自动编译
自动编译:对java应用没有什么意义,对web应用来说,当修改了代码时,会自动帮你编译并发布到web容器中去,省的重启web容器了. build:编译,Eclipse的编译是基于时间戳的判断机制的.c ...
- Spring的Aspect切面类不能拦截Controller中的方法
根本原因在于<aop:aspectj-autoproxy />这句话是在spring的配置文件内,还是在springmvc的配置文件内.如果是在spring的配置文件内,则@Control ...
- 如何在DOS窗口复制和粘贴命令
在键盘上按下windows+R键,打开运行窗口. 在“打开”处输入cmd,并按下enter键,打开DOS窗口. 把鼠标移动到DOS窗口标题处,单击鼠标右键,选择属性. 把编辑选项处的“快速编辑模式”勾 ...
- C#面向对象(继承)
- 采用busybox 代替android 自带的shell
折腾了几天,被Android那点儿少得可怜的shell命令折磨的死去活来,终于下定了革命的决心.看一下怎么把渺小的toolbox替换成伟大的busybox吧.先大致描述一下Android系统中的she ...
- vue之导入Bootstrap以及jQuery的两种方式
Vue引入bootstrap主要有两种方法 方法一:在main.js中引入,此方法导入的bootstrap中对于html,body的一些预设置的css样式可能无效. 一.引入jQuery 在当前项目的 ...
- Java集合(Collection)综述
1.集合简介 数学定义:一般地,我们把研究对象统称为元素.把一些元素组成的总体叫做集合. java集合定义:集合就是一个放数据的容器,准确的说是放数据对象引用的容器. java中通用集合类存放于jav ...
- hdu 1542 线段树+扫描线 学习
学习扫描线ing... 玄学的东西... 扫描线其实就是用一条假想的线去扫描一堆矩形,借以求出他们的面积或周长(这一篇是面积,下一篇是周长) 扫描线求面积的主要思想就是对一个二维的矩形的某一维上建立一 ...
- python接口自动化测试十七:使用bs4框架进行简单的爬虫
安装:beautifulsoup4 from bs4 import BeautifulSoup yoyo = open('yoyo.html', 'r') # 以读的方式打开“yoyo.html” ...
- 获取修改value
val() 方法,获取和修改有value属性的元素,有value属性的元素有input.botton.select等.相当于JavaScript中的value. <!DOCTYPE html&g ...