题目链接

\(Description\)

有一个一行n列的棋盘,每个人每次往上放一个棋子,将三个棋子连在一起的人赢。问是否有必胜策略。

\(Solution\)

首先一个人若在\(i\)处放棋子,那么另一个人就不能在\(i-2,i-1,i+1,i+2\)处放石子,这样会使对方赢。

那么可以看做:在\(i\)处放棋子后,另一个人不能选择\(i-2,i-1,i+1,i+2\)处放石子,不能放的人输。

可以联想到Nim游戏,一个人取一个石子,另一个人可取石子\(-2\);同时是产生两个局面

即1*n的棋盘上 在i处放棋子,会将游戏划分成\(s(i-3)+s(n-i-2)\)两个游戏

那这就是Multi-SG游戏,用SG函数解决。

记忆化,\(O(n^2)\).

Multi-SG游戏:

详细见这

Def: 在符合拓扑原则的前提下,一个单一游戏的后继可以为多个单一游戏。其余规则与SG游戏相同。

对于一个单一游戏,不同方法可能会将其划分为多个单一游戏。每一方法对应的多个单一游戏的(异或)和即可表示这种方法的NP状态。

而这个单一游戏的SG值为其所有方法的SG值的mex

//1692K 266MS
#include <cstdio>
#include <cstring>
const int N=2002; int n,sg[N]; int Get_SG(int x)
{
if(x<0) return 0;
if(~sg[x]) return sg[x];
bool vis[N];
memset(vis,0,sizeof vis);
for(int i=1; i<=x; ++i)//放所有位置都是子局面
vis[Get_SG(i-3)^Get_SG(x-i-2)]=1;//x为偶数时会有重 不过记忆化 无妨
for(int i=0; ; ++i)
if(!vis[i]) return sg[x]=i;
} int main()
{
while(~scanf("%d",&n))
memset(sg,0xff,sizeof sg), puts(Get_SG(n)?"1":"2");
return 0;
}

POJ.3537.Crosses and Crosses(博弈论 Multi-SG)的更多相关文章

  1. poj 3537 Crosses and Crosses 博弈论之grundy值

    题意: 给1*n的格子,轮流在上面叉叉,最先画得3个连续叉叉的赢.问先手必胜还是必败. 分析: 求状态的grundy值(也就是sg值),详细怎么求详见代码.为什么这么求要自己想的,仅仅可意会(别人都说 ...

  2. 【POJ】【3537】Crosses and Crosses

    博弈论 相当于放了x的位置,左右4格都不能再放x了,谁无处可放就输. n<=2000 直接枚举后继状态,暴力求SG函数即可. 例: 0000000->x..0000 / .x..000 / ...

  3. POJ 3537 Crosses and Crosses

    Crosses and Crosses Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 2237 Accepted: 821 Ca ...

  4. poj 3575 Crosses and Crosses(SG函数)

    Crosses and Crosses Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3063   Accepted: 11 ...

  5. POJ 3537 Crosses and Crosses (NEERC)

                      Crosses and Crosses Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 4 ...

  6. POJ 3537 multi-sg 暴力求SG

    长为n的一列格子,轮流放同种棋子,率先使棋子连成3个者胜. 可以发现每次放一个棋子后,后手都不能放在[x-2,x+2]这个区间,那么相当于每次放棋将游戏分成了两个,不能放棋者败. 暴力求SG即可 /* ...

  7. [poj3537]Crosses and Crosses_博弈论

    Crosses and Crosses poj-3537 题目大意:给定一个1*n的网格,每次往格子内填一个$\times$,连续的三个即可获胜. 注释:$1\le n\le 2000$. 想法:我们 ...

  8. POJ 2425 A Chess Game 博弈论 sg函数

    http://poj.org/problem?id=2425 典型的sg函数,建图搜sg函数预处理之后直接求每次游戏的异或和.仍然是因为看不懂题目卡了好久. 这道题大概有两个坑, 1.是搜索的时候vi ...

  9. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  10. [poj 3537]Crosses and Crosses(博弈论)

    题目:http://poj.org/problem?id=3537 题意:给你n个格子,两个人依次在n个格子的任意空位置画"X",谁如果画了一个后,3个X连在了一起,那么那个人就获 ...

随机推荐

  1. 【C++】面试题目:从尾到头打印链表

    通过<剑指offer 名企面试官精讲典型编程题>看到一道讲解链表的题目. 题目:输入一个链表的头结点,从尾到头反过来打印出每个结点的值 链表定义如下: typedef struct _NO ...

  2. py-faster-rcnn + opencv3.0.0 + ubuntu16.04配置(CPU模式)

    最近开始做行人检测,因此开始接触faster-rcnn,这里贴上配置教程(亲测可行),不过是基于cpu的,蓝瘦... 参考博客:http://www.tuicool.com/articles/nYJr ...

  3. [ VB ] OrElse, AndAlso [ C# ] ||, && 运算符

    条件演算子も当然のように C# と VB では記述方法が異なる.比較すると下表のようになる. VB              C#OrElse        ||AndAlso     &&a ...

  4. 生成ansible-playbook的yaml文件的代码(字典排序问题无法解决)

    import yaml import collections def add_task(): return None def add_vars(): return None def add_handl ...

  5. gunicorn+flask使用与配置

    gun.conf的内容 import os bind = '10.1.240.222:5000' workers = 4 backlog = 2048 worker_class = "syn ...

  6. BZOJ 3498: PA2009 Cakes 一类经典的三元环计数问题

    首先引入一个最常见的经典三元环问题. #include <bits/stdc++.h> using namespace std; const int maxn = 100005; vect ...

  7. mtk 无线配置文件生效过程

    openwrt 下无线接口的配置文件位于 /etc/config/wirless 中. 启动 /sbin/wifi 脚本后,生效过程如下: (1)通过 uci2dat 工具生成所需要的 .dat文件 ...

  8. ajax post 传参数加引号和不加引号的区别

    1.前言 用ajax技术,type:post,data:参数列表.参数列表就是一个JSON数据,但key可以加引号,也可以不加引号,那总有区别的. 2.区别 var d2 = "two&qu ...

  9. bootstrap 列表--水平定义列表

    水平定义列表就像内联列表一样,Bootstrap可以给<dl>添加类名“.dl-horizontal”给定义列表实现水平显示效果. @media (min-width: 768px) { ...

  10. java判断给定路径或URL下的文件或文件夹是否存在?

    if (file.exists()) { 来判断这是不是一个文件. file.isDirectory() 来判断这是不是一个文件夹. 1.File testFile = new File(testFi ...