BZOJ.3585.mex(线段树)
题意:多次求区间\(mex\)。
考虑\([1,i]\)的\(mex[i]\),显然是单调的
而对于\([l,r]\)与\([l+1,r]\),如果\(nxt[a[l]]>r\),那么\([l+1,r]\)中所有\(>a[l]\)的数显然要改成\(a[l]\)
把询问按左端点排序;离散化,预处理下\(nxt[]\),处理出\([1,i]\)的\(mex[i]\)。剩下就是线段树的区间更新、单点查询了
/*
离散化的时候>=n的全部看做n就好了
查询时是只需查r点的(l之前能更新r的已经更新完了,初始时是[1,r],r点现在就是[l,r]了)
单点即可不需要PushUp(也不好得某个区间的mex)
非叶节点上的mex完全可以代替tag
离散化需要注意 其实不是很懂这
*/
#include<cstdio>
#include<cctype>
#include<algorithm>
#define gc() getchar()
#define now node[rt]
#define lson node[node[rt].ls]
#define rson node[node[rt].rs]
const int N=2e5+5,INF=1e7;
int n,m,A[N],mex[N]/*不要和A混用*/,tmp[N],nxt[N],las[N],ans[N];
bool vis[N];
struct Ques
{
int l,r,id;
Ques() {}
Ques(int l,int r,int id): l(l),r(r),id(id) {}
bool operator <(const Ques &x)const {return l<x.l;}
}q[N];
struct Seg_Tree
{
int tot;
struct Node
{
int ls,rs,mex;
}node[N<<1];
inline void Upd(int &x,int v) {x=std::min(x,v);}
inline void PushDown(int rt)
{
Upd(lson.mex,now.mex), Upd(rson.mex,now.mex);
now.mex=INF;
}
void Build(int l,int r)
{
int rt=tot++;
if(l==r) now.mex = mex[l];
else
{
int m=l+r>>1; now.mex=INF;
now.ls=tot, Build(l,m);
now.rs=tot, Build(m+1,r);
}
}
void Update(int l,int r,int rt,int L,int R,int v)
{
if(L<=l && r<=R) Upd(now.mex,v);
else
{
if(now.mex<INF) PushDown(rt);
int m=l+r>>1;
if(L<=m) Update(l,m,now.ls,L,R,v);
if(m<R) Update(m+1,r,now.rs,L,R,v);
}
}
int Query(int l,int r,int rt,int p)
{
if(l==r) return now.mex;
if(now.mex<INF) PushDown(rt);
int m=l+r>>1;
if(p<=m) return Query(l,m,now.ls,p);
else return Query(m+1,r,now.rs,p);
}
}t;
#undef now
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int Find(int x,int r)
{
int l=1,m;
while(l<r)
{
if(tmp[(m=l+r>>1)]<x) l=m+1;
else r=m;
}
return l;
}
int main()
{
n=read(),m=read();
for(int i=1; i<=n; ++i) tmp[i]=A[i]=std::min(n,read());
std::sort(tmp+1,tmp+1+n);
int cnt=1;
for(int i=2; i<=n && !(tmp[i]==n&&tmp[i+1]==n); ++i)
if(tmp[i]!=tmp[i-1]) tmp[++cnt]=tmp[i];
for(int k=0,p,i=1; i<=n; ++i)
{
vis[p=Find(A[i],cnt)]=1;
if(A[i]==k)//只有在当前最小值出现时才更新。。mex...
while(vis[p])//p-1,vis[k]?
{
++k;
if(tmp[++p]!=k) break;//离散化后
}
mex[i]=k;
}
t.Build(1,n);
for(int i=0; i<=n; ++i) las[i]=n+1;
for(int tp,i=n; i; --i) nxt[i]=las[tp=Find(A[i],cnt)], las[tp]=i;//!
for(int l,i=1; i<=m; ++i) l=read(), q[i]=Ques(l,read(),i);
std::sort(q+1,q+1+m);
for(int now=1,i=1; i<=m; ++i)
{
while(now<q[i].l)
t.Update(1,n,0,now+1,nxt[now]-1,A[now]), ++now;
ans[q[i].id]=t.Query(1,n,0,q[i].r);
}
for(int i=1; i<=m; ++i) printf("%d\n",ans[i]);
return 0;
}
BZOJ.3585.mex(线段树)的更多相关文章
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
- BZOJ 3585: mex [主席树]
3585: mex Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 787 Solved: 422[Submit][Status][Discuss] ...
- BZOJ.4184.shallot(线段树分治 线性基)
BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- BZOJ 3585: mex( 离线 + 线段树 )
离线, 询问排序. 先处理出1~i的答案, 这样可以回答左端点为1的询问.完成后就用seq(1)将1到它下一次出现的位置前更新. 不断这样转移就OK了 ------------------------ ...
- bzoj 3585: mex && 3339: Rmq Problem -- 主席树
3585: mex Time Limit: 20 Sec Memory Limit: 128 MB Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区 ...
- HDU-4747 Mex 线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...
- 【BZOJ 3476】 线段树===
59 懒惰的奶牛贝西所在的牧场,散落着 N 堆牧草,其中第 i 堆牧草在 ( Xi,Yi ) 的位置,数量有 Ai 个单位.贝西从家移动到某一堆牧草的时候,只能沿坐标轴朝正北.正东.正西.正南这四个 ...
随机推荐
- 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”
[转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...
- IAR KEIL ECLIPSE使用JlinkScript文件进行调试
转载自:https://wiki.segger.com/Using_J-Link_Script_Files Using J-Link Script Files Contents [hide] ...
- 在imagenet预训模型上进行finetune
所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune ...
- Linux驱动总结3- unlocked_ioctl和堵塞(waitqueue)读写函数的实现 【转】
转自:http://blog.chinaunix.net/uid-20937170-id-3033633.html 学习了驱动程序的设计,感觉在学习驱动的同时学习linux内核,也是很不错的过程哦,做 ...
- jq常用功能操作
//表示所有选中的商品 var $goods=$(".goods:checked"); var arr=[]; for(i=0;i<$goods.length;i++){ a ...
- cocos creator 的scorllview 滑动事件和 子内容触摸事件会产生冲突
1:问题描叙: UI上的 scorllview 的子元素需要拖动到游戏场景.所以子元素需要绑定触摸事件,scorllview 默认的事件处理方式就会和子元素的触摸事件冲突.2:解决方案: Scroll ...
- Solution of Publishing failed with multiple errors Error copying file static\
1.前言 由于系统被IT打了防病毒补丁,然后启动web项目一直出现Publishing failed with multiple errors Error copying file static... ...
- 分布式调用技术 RPC VS REST
一 分布式调用大体上就分为两类,RPC式的,REST式的,两者的区别主要是就是: 1. RPC是面向动作的(方法调用) 2. REST是面向资源的(URL表示资源,HTTP动词表示动作) 从变现形式来 ...
- 微服务(Microservices )简介
概念 微服务架构风格是一种将单个应用程序作为一套小型服务开发的方法,每种应用程序都在自己的进程中运行, 并与轻量级机制(通常是HTTP资源API)进行通信. 这些服务是围绕业务功能构建的,可以通过全自 ...
- ValueError: total size of new array must be unchanged
在对数据增强后的faster rcnn中进行训练时,出现这个错误,原因是在lib/roi_data_layer/layer.py中,会出现 inds = np.reshape(inds, (-1,2) ...