最新内容会更新在主站深入浅出区块链社区

原文链接:用Python从零开始创建区块链

区块链中的共识算法

在比特币公链架构解析中,就曾提到过为了实现去中介化的设计,比特币设计了一套共识协议,并通过此协议来保证系统的稳定性和防攻击性。 并且我们知道,截止目前使用最广泛,也是最被大家接受的共识算法,是我们先前介绍过的POW(proof of work)工作量证明算法。目前市值排名前二的比特币和以太坊也是采用的此算法。

虽然POW共识算法取得了巨大的成功,但对它的质疑也从来未曾停止过。 其中最主要的一个原因就是电力消耗。据不完全统计,基于POW的挖矿机制所消耗的电量是非常巨大的,甚至比绝大多数国家耗电量还要多。这对我们的资源造成了极大的浪费,此外随着比特大陆等公司的强势崛起,造成了算力的高度集中。

基于以上种种原因,更多的共识算法被提出来 POS、DPOS、BPFT等等。 今天我们就来认识POS(proof of stake)算法。

Proof of stake,译为权益证明。你可能已经猜到了,权益证明简单理解就是拥有更多token的人,有更大的概率获得记账权利,然后获得奖励。 这个概率具体有多大呢? 下面我们在代码实现中会展示,分析也放在后面。 当然,POS是会比POW更好吗? 会更去中心化吗? 现在看来未必,所以我们这里也不去对比谁优谁劣。 我们站在中立的角度,单纯的来讨论讨论POS这种算法。

代码实战

生成一个Block

既然要实现POS算法,那么就难免要生成一条链,链又是由一个个Block生成的,所以下面我们首先来看看如何生成Block,当然在前面的内容里面,关于如何生成Block,以及交易、UTXO等等都已经介绍过了。由于今天我们的核心是实现POS,所以关于Block的生成,我们就用最简单的实现方式,好让大家把目光聚焦在核心的内容上面。

我们用三个方法来实现生成一个合法的区块

  • calculate_hash 计算区块的hash值
  • is_block_valid 校验区块是否合法
  • generate_block 生成一个区块

from hashlib import sha256
from datetime import datetime def generate_block(oldblock, bpm, address):
""" :param oldblock:
:param bpm:
:param address:
:return:
"""
newblock = {
"Index": oldblock["Index"] + 1,
"BPM": bpm,
"Timestamp": str(datetime.now()),
"PrevHash": oldblock["Hash"],
"Validator": address
} newblock["Hash"] = calculate_hash(newblock)
return newblock def calculate_hash(block):
record = "".join([
str(block["Index"]),
str(block["BPM"]),
block["Timestamp"],
block["PrevHash"]
]) return sha256(record.encode()).hexdigest() def is_block_valid(newblock, oldblock):
""" :param newblock:
:param oldblock:
:return:
""" if oldblock["Index"] + 1 != newblock["Index"]:
return False if oldblock["Hash"] != newblock["PrevHash"]:
return False if calculate_hash(newblock) != newblock["Hash"]:
return False return True

这里为了更灵活,我们没有用类的实现方式,直接采用函数来实现了Block生成,相信很容易看懂。

创建一个TCP服务器

由于我们需要用权益证明算法来选择记账人,所以需要从很多Node(节点)中选择记账人,也就是需要一个server让节点链接上来,同时要同步信息给节点。因此需要一个TCP长链接。

from socketserver import BaseRequestHandler, ThreadingTCPServer

def run():
# start a tcp server
serv = ThreadingTCPServer(('', 9090), HandleConn)
serv.serve_forever()

在这里我们用了python内库socketserver来创建了一个TCPServer。 需要注意的是,这里我们是采用的多线程的创建方式,这样可以保证有多个客户端同时连接上来,而不至于被阻塞。当然,这里这个server也是存在问题的,那就是有多少个客户端连接,就会创建多少个线程,更好的方式是创建一个线程池。由于这里是测试,所以就采用更简单的方式了。

相信大家已经看到了,在我们创建TCPServer的时候,使用到了HandleConn,但是我们还没有定义,所以接下来我们就来定义一个HandleConn

消息处理器

下面我们来实现Handler函数,Handler函数在跟Client Node通信的时候,需要我们的Node实现下面的功能

  • Node可以输入balance(token数量) 也就是股权数目
  • Node需要能够接收广播,方便Server同步区块以及记账人信息
  • 添加自己到候选人名单 (候选人为持有token的人)
  • 输入BPM生成Block
  • 验证一个区块的合法性

感觉任务还是蛮多的,接下来我们看代码实现

import threading
from queue import Queue, Empty # 定义变量
block_chain = []
temp_blocks = []
candidate_blocks = Queue() # 创建队列,用于线程间通信
announcements = Queue()
validators = {} My_Lock = threading.Lock() class HandleConn(BaseRequestHandler):
def handle(self):
print("Got connection from", self.client_address) # validator address
self.request.send(b"Enter token balance:")
balance = self.request.recv(8192)
try:
balance = int(balance)
except Exception as e:
print(e) t = str(datetime.now())
address = sha256(t.encode()).hexdigest()
validators[address] = balance
print(validators) while True:
announce_winner_t = threading.Thread(target=annouce_winner, args=(announcements, self.request,),
daemon=True)
announce_winner_t.start() self.request.send(b"\nEnter a new BPM:")
bpm = self.request.recv(8192)
try:
bpm = int(bpm)
except Exception as e:
print(e)
del validators[address]
break # with My_Lock:
last_block = block_chain[-1] new_block = generate_block(last_block, bpm, address) if is_block_valid(new_block, last_block):
print("new block is valid!")
candidate_blocks.put(new_block) self.request.send(b"\nEnter a new BPM:\n") annouce_blockchain_t = threading.Thread(target=annouce_blockchain, args=(self.request,), daemon=True)
annouce_blockchain_t.start()

这段代码,可能对大多数同学来说是有难度的,在这里我们采用了多线程的方式,同时为了能够让消息在线程间通信,我们使用了队列。 这里使用队列,也是为了我们的系统可以更好的拓展,后面如果可能,这一节的程序很容易拓展为分布式系统。 将多线程里面处理的任务拆分出去成独立的服务,然后用消息队列进行通信,就是一个简单的分布式系统啦。(是不是很激动?)

由于这里有难度,所以代码还是讲一讲吧

    # validator address
self.request.send(b"Enter token balance:")
balance = self.request.recv(8192)
try:
balance = int(balance)
except Exception as e:
print(e) t = str(datetime.now())
address = sha256(t.encode()).hexdigest()
validators[address] = balance
print(validators)

这一段就是我们提到的Node 客户端添加自己到候选人的代码,每链接一个客户端,就会添加一个候选人。 这里我们用添加的时间戳的hash来记录候选人。 当然也可以用其他的方式,比如我们代码里面的client_address


announce_winner_t = threading.Thread(target=annouce_winner, args=(announcements, self.request,),
daemon=True)
announce_winner_t.start() def annouce_winner(announcements, request):
""" :param announcements:
:param request:
:return:
"""
while True:
try:
msg = announcements.get(block=False)
request.send(msg.encode())
request.send(b'\n')
except Empty:
time.sleep(3)
continue

然后接下来我们起了一个线程去广播获得记账权的节点信息到所有节点。

self.request.send(b"\nEnter a new BPM:")
bpm = self.request.recv(8192)
try:
bpm = int(bpm)
except Exception as e:
print(e)
del validators[address]
break # with My_Lock:
last_block = block_chain[-1] new_block = generate_block(last_block, bpm, address) if is_block_valid(new_block, last_block):
print("new block is valid!")
candidate_blocks.put(new_block)

根据节点输入的BPM值生成一个区块,并校验区块的有效性。 将有效的区块放到候选区块当中,等待记账人将区块添加到链上。

annouce_blockchain_t = threading.Thread(target=annouce_blockchain, args=(self.request,), daemon=True)
annouce_blockchain_t.start() def annouce_blockchain(request):
""" :param request:
:return:
"""
while True:
time.sleep(30)
with My_Lock:
output = json.dumps(block_chain)
try:
request.send(output.encode())
request.send(b'\n')
except OSError:
pass

最后起一个线程,同步区块链到所有节点。

看完了,节点跟Server交互的部分,接下来是最重要的部分,

POS算法实现

def pick_winner(announcements):
"""
选择记账人
:param announcements:
:return:
"""
time.sleep(10) while True:
with My_Lock:
temp = temp_blocks lottery_pool = [] # if temp:
for block in temp:
if block["Validator"] not in lottery_pool:
set_validators = validators
k = set_validators.get(block["Validator"])
if k:
for i in range(k):
lottery_pool.append(block["Validator"]) lottery_winner = choice(lottery_pool)
print(lottery_winner)
# add block of winner to blockchain and let all the other nodes known
for block in temp:
if block["Validator"] == lottery_winner:
with My_Lock:
block_chain.append(block) # write message in queue.
msg = "\n{0} 赢得了记账权利\n".format(lottery_winner)
announcements.put(msg) break with My_Lock:
temp_blocks.clear()

这里我们用pick_winner 来选择记账权利,我们根据token数量构造了一个列表。 一个人获得记账权利的概率为:

p = mount['NodeA']/mount['All']

文字描述就是其token数目在总数中的占比。 比如总数有100个,他有10个,那么其获得记账权的概率就是0.1, 到这里核心的部分就写的差不多了,接下来,我们来添加节点,开始测试吧

测试POS的记账方式

在测试之前,起始还有一部分工作要做,前面我们的run方法需要完善下,代码如下:

def run():
# create a genesis block
t = str(datetime.now())
genesis_block = {
"Index": 0,
"Timestamp": t,
"BPM": 0,
"PrevHash": "",
"Validator": ""
} genesis_block["Hash"] = calculate_hash(genesis_block)
print(genesis_block)
block_chain.append(genesis_block) thread_canditate = threading.Thread(target=candidate, args=(candidate_blocks,), daemon=True)
thread_pick = threading.Thread(target=pick_winner, args=(announcements,), daemon=True) thread_canditate.start()
thread_pick.start() # start a tcp server
serv = ThreadingTCPServer(('', 9090), HandleConn)
serv.serve_forever() def candidate(candidate_blocks):
""" :param candidate_blocks:
:return:
"""
while True:
try:
candi = candidate_blocks.get(block=False)
except Empty:
time.sleep(5)
continue
temp_blocks.append(candi) if __name__ == '__main__':
run()

添加节点连接到TCPServer

为了充分减少程序的复杂性,tcp client我们这里就不实现了,可以放在后面拓展部分。 毕竟我们这个系统是很容易扩展的,后面我们拆分了多线程的部分,在实现tcp client就是一个完整的分布式系统了。

所以,我们这里用linux自带的命令 nc,不知道nc怎么用的同学可以google或者 man nc

  • 启动服务 运行 python pos.py
  • 打开3个终端
  • 分别输入下面命令
    • nc localhost 9090

终端如果输出

Enter token balance:

说明你client已经链接服务器ok啦.

测试POS的记账方式

接下来依次按照提示操作。 balance可以按心情来操作,因为这里是测试,我们输入100,

紧接着会提示输入BPM,我们前面提到过,输入BPM是为了生成Block,那么就输入吧,随便输入个9. ok, 接下来就稍等片刻,等待记账。

输出如同所示



依次在不同的终端,根据提示输入数字,等待消息同步。

生成区块链

下面是我这边获得的3个block信息。

总结

在上面的代码中,我们实现了一个完整的基于POS算法记账的链,当然这里有许多值得扩展与改进的地方。

  • python中多线程开销比较大,可以改成协程的方式
  • TCP建立的长链接是基于TCPServer,是中心化的方式,可以改成P2P对等网络
  • 链的信息不够完整
  • 系统可以拓展成分布式,让其更健壮

大概列了以上几点,其他还有很多可以拓展的地方,感兴趣的朋友可以先玩玩, 后者等到我们后面的教程。 (广告打的措手不及,哈哈)

当然了,语言不是重点,所以在这里,我也实现了go语言的版本源码地址

go语言的实现感觉要更好理解一点,也显得要优雅一点。这也是为什么go语言在分布式领域要更抢手的原因之一吧!

项目地址

参考

本文来自深入浅出区块链作者Magic_陈,他的专栏专注区块链底层技术开发,P2P网络、加密技术、MerkleTree、DAG、DHT等等,另外对于分布式系统的学习也很有帮助。欢迎大家交流。

深入浅出区块链 - 系统学习区块链,打造最好的区块链技术博客,欢迎大家一起加入。

Python实现一条基于POS算法的区块链的更多相关文章

  1. SHA-256算法和区块链原理初探

    组内技术分享的内容,目前网上相关资料很多,但读起来都不太合自己的习惯,于是自己整理并编写一篇简洁并便于(自己)理解和分享的文章. 因为之前对密码学没有专门研究,自己的体会或理解会特别标注为" ...

  2. 分布式共识算法 (四) BTF算法(区块链使用)

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.引子 前面介绍的算法,无论是 Paxos ...

  3. python如何与以太坊交互并将区块链信息写入SQLite

    关于区块链介绍性的研讨会通常以易于理解的点对点网络和银行分类账这类故事开头,然后直接跳到编写智能合约,这显得非常突兀.因此,想象自己走进丛林,想象以太坊区块链是一个你即将研究的奇怪生物.今天我们将观察 ...

  4. 基于arm v8搭建区块链环境

    服务器信息: cpu:华为鲲鹏 cpu架构:arm v8 系统:CenOS-AltArch 7.6 相关工具安装 yum更新 yum update 安装vim/gcc/git/curl工具软件 yum ...

  5. 【区块链】【一】Hash 算法【转】

    问题导读1.哈希算法在区块链的作用是什么?2.什么是哈希算法?3.哈希算法是否可逆?4.比特币采用的是什么哈希算法? 作用在学习哈希算法前,我们需要知道哈希在区块链的作用哈希算法的作用如下:区块链通过 ...

  6. (转)区块链共识机制分析——论PoW,PoS,DPos和DAG的优缺点

    近期,随着区块链技术在社区中的声音越来越大,业界已经开始从技术角度对区块链进行全方位的解读.作为第一批区块链技术的实现,传统比特币与以太坊在共识机制.存储机制.智能合约机制.跨链通讯机制等领域并没有非 ...

  7. Python创建一个简单的区块链

    区块链(Blockchain)是一种分布式账本(listributed ledger),它是一种仅供增加(append-only),内容不可变(immutable)的有序(ordered)链式数据结构 ...

  8. 50行Python代码构建小型区块链

    本文介绍了如何使用python构建一个小型的区块链技术,使用Python2实现,代码不到50行. Although some think blockchain is a solution waitin ...

  9. 40多行python代码开发一个区块链。

    40多行python代码开发一个区块链?可信吗?我们将通过Python 2动手开发实现一个迷你区块链来帮你真正理解区块链技术的核心原理.python开发区块链的源代码保存在Github. 尽管有人认为 ...

随机推荐

  1. Oracle错误——SP2-0734: 未知的命令开头 "imp C##sin..." - 忽略了剩余的行。

    错误 在windows的DOS窗口下使用命令导入Oracle数据. 原因 进入sqlplus里是不能执行imp的(sqlplus不认识imp),imp 是个工具,应该在cmd的dos命令提示符下执行.

  2. checkbox勾选事件,JQ设置css,下拉框JQ选中

    <input id="CheckMainCompany" type="checkbox"/> $(function() { $("#Che ...

  3. 连号区间数|2013年蓝桥杯B组题解析第十题-fishers

    连号区间数 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递 ...

  4. CodeForces 509C Sums of Digits(贪心乱搞)题解

    题意:a是严格递增数列,bi是ai每一位的和,告诉你b1~bn,问你怎样搞才能让an最小 思路:让ai刚好大于ai-1弄出来的an最小.所以直接模拟贪心,如果当前位和前一个数的当前位一样并且后面还能生 ...

  5. Codeforces Round #535 (Div. 3) 解题报告

    CF1108A. Two distinct points 做法:模拟 如果两者左端点重合就第二条的左端点++就好,然后输出左端点 #include <bits/stdc++.h> usin ...

  6. 题解——loj6277 数列分块入门1(分块)

    分块裸题 然后就是记得左右边界处理和分块的初始化 忘了初始化会被卡成暴力 #include <cstdio> #include <algorithm> #include < ...

  7. Hive command

    hive常用命令 Hadoop Hive概念学习系列之hive里的分区(九) DOC hive分区(partition)简介 Hive分区(静态分区+动态分区) Hive分区.分桶操作及其比较 hiv ...

  8. 在mybatis中resultMap与resultType的区别

    MyBatis中在查询进行select映射的时候,返回类型可以用resultType,也可以用resultMapresultType是直接表示返回类型的,而resultMap则是对外部ResultMa ...

  9. 51nod 1689 逛街(优先队列)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1689 题意: 题意: 枚举终点,这样就确定路上的花费,接下来只需要计算进 ...

  10. 前端单页面富应用(SPA)的实现

    一. 什么是单页面富应用? 单页面应用:Single Page Application 概念:Web应用即使不刷新也在不同的页面间切换,解决浏览器前进.后退等机制被破坏等问题.并且页面访问会被浏览器保 ...