链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1558

题解:

考虑这么用线段树进行维护,由于他有区间修改等差数列

很容易想到可以用差分数组来维护(这东西经常和数据结构用在一起)

那么每一次的区间修改就变成了单点修改

另外我们可以利用线段树来维护:

h---t区间等差数列个数,h----(t-1)区间等差数列个数,(h+1)---t区间等差数列个数

为了维护这三个值,要引入(h+1)-----(t-1)(这个转移非常巧妙)

为什么要维护这些呢,因为我们算一个就可以发现

当他们不是一个等差数列时,区间中有一个数是没有用的

由于进行了差分,等差数列其实就是差分数组的值相同

bzoj re了 并不知道为什么 对拍是对的

代码:

#include <bits/stdc++.h>
#define maxn 311111
#define mid (p[x].h+p[x].t)/2
using namespace std;
int n,m,a[maxn*],b[maxn*];
struct re
{
int h,t,sum,sum1,sum2,sum3,lazy,hnum,tnum;
}p[maxn*];
struct ree
{
int sum,sum1,sum2;
};
void updata(int x)
{
p[x].sum=min(p[x*].sum2+p[x*+].sum,p[x*].sum+p[x*+].sum1);
p[x].sum1=min(p[x*].sum3+p[x*+].sum,p[x*].sum1+p[x*+].sum1);
p[x].sum2=min(p[x*].sum2+p[x*+].sum2,p[x*].sum+p[x*+].sum3);
p[x].sum3=min(p[x*].sum3+p[x*+].sum2,p[x*].sum1+p[x*+].sum3);
if (p[x*].tnum==p[x*+].hnum)
{
p[x].sum=min(p[x].sum,p[x*].sum+p[x*+].sum-);
p[x].sum1=min(p[x].sum1,p[x*].sum1+p[x*+].sum-);
p[x].sum2=min(p[x].sum2,p[x*].sum+p[x*+].sum2-);
p[x].sum3=min(p[x].sum3,p[x*].sum1+p[x*+].sum2-);
}
}
void build(int x,int h,int t)
{
p[x].h=h; p[x].t=t;
p[x].hnum=b[p[x].h];
p[x].tnum=b[p[x].t];
if (p[x].h==p[x].t)
{
p[x].sum=p[x].sum1=p[x].sum2=;p[x].sum3=; return;
}
build(x*,h,mid); build(x*+,mid+,t);
updata(x);
}
void down(int x)
{
if (p[x].lazy)
{
p[x].hnum+=p[x].lazy;
p[x].tnum+=p[x].lazy;
if (p[x].h!=p[x].t)
{
p[x*].lazy+=p[x].lazy;
p[x*+].lazy+=p[x].lazy;
}
p[x].lazy=;
}
}
void change(int x,int h,int t,int sum)
{
down(x);
if (p[x].h>t||p[x].t<h) return;
if (h<=p[x].h&&p[x].t<=t)
{
p[x].lazy+=sum; down(x);
return;
}
if (p[x].h<=t&&p[x].h>=h) p[x].hnum+=sum;
if (p[x].t<=t&&p[x].t>=h) p[x].tnum+=sum;
change(x*,h,t,sum);
change(x*+,h,t,sum);
updata(x);
}
re query(int x,int h,int t)
{
down(x);
re now;
if (h<=p[x].h&&p[x].t<=t)
{
now=p[x];
return(now);
}
if (mid+>t) return(query(x*,h,t));
if (mid<h) return(query(x*+,h,t));
re a=query(x*,h,t),b=query(x*+,h,t);
now.sum=min(a.sum2+b.sum,a.sum+b.sum1);
now.sum1=min(a.sum3+b.sum,a.sum1+b.sum1);
now.sum2=min(a.sum2+b.sum2,a.sum+b.sum3);
now.sum3=min(a.sum3+b.sum2,a.sum1+b.sum3);
if (p[x*].tnum==p[x*+].hnum)
{
now.sum=min(now.sum,a.sum+b.sum-);
now.sum1=min(now.sum1,a.sum1+b.sum-);
now.sum2=min(now.sum2,a.sum+b.sum2-);
now.sum3=min(now.sum3,a.sum1+b.sum2-);
}
return(now);
}
int main()
{
freopen("noip.in","r",stdin);
freopen("noip.out","w",stdout);
std::ios::sync_with_stdio(false);
cin>>n;
for (int i=;i<=n;i++)
{
cin>>a[i];
b[i-a]=a[i]-a[i-];
}
build(,,n-);
//for (int i=1;i<=2*n;i++){cout<<p[i].h<<" "<<p[i].t<<" "<<p[i].sum<<endl;}
cin>>m;
char c;
for (int i=;i<=m;i++)
{
int a1,b1,c1,d1;
cin>>c;
if (c=='A')
{
cin>>a1>>b1>>c1>>d1;
change(,a1,b1-,d1);
if (a1!=) change(,a1-,a1-,c1);
change(,b1,b1,-(c1+(b1-a1)*d1));
}
if (c=='B')
{
cin>>a1>>b1; re x;
if (a1!=b1) x=query(,a1,b1-);
else x.sum=;
cout<<x.sum<<endl;
}
}
}

[JSOI2009]等差数列的更多相关文章

  1. bzoj 1558: [JSOI2009]等差数列

    Description Solution 把原数组变为差分数组,然后剩下的就十分显然了 区间查询用线段树维护 修改操作就是区间加法和两个单点修改 一个等差数列实际上就是 开头一个数字+数值相等的一段 ...

  2. [bzoj1558][JSOI2009]等差数列

    题目:给定n个数,m个操作,每次给一段区间加一个等差数列或者询问一段区间至少要用多少个等差数列来表示.$n,m\leqslant 10^{5}$ 题解:老套路,维护差分数组,修改操作变成了两个单点加和 ...

  3. 洛谷P4243/bzoj1558 [JSOI2009]等差数列(线段树维护差分+爆炸恶心的合并)

    题面 首先感谢这篇题解,是思路来源 看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分.再注意点细节,\(A\)操作完美解决 然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎 ...

  4. BZOJ.1558.[JSOI2009]等差数列(线段树 差分)

    BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...

  5. BZOJ1558 [JSOI2009]等差数列 【线段树】

    题目链接 BZOJ1558 题解 等差数列,当然是差分一下 差分值相同的连续位置形成等差数列,我们所选的两个等差数列之间可以有一个位置舍弃 例如: \(1 \; 2 \; 3 \; 6 \; 8 \; ...

  6. JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD

    等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...

  7. luogu P4243 [JSOI2009]等差数列 题解

    前言: 这题真ex... 强烈谴责在题解里面放毒瘤题链接的屑出题人! 吐 ️ 解析: 这题分成两步走. 首先,既然题目中的修改操作是区间加等差数列,那么就容易想到在差分数组上进行操作. 然后就是相当恶 ...

  8. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. Python基础(协程函数、内置函数、递归、模块和包)-day05

    写在前面 上课第五天,打卡: 凭着爱,再回首: 一.协程函数(生成器:yield的表达式形式) 1.yield 的语句形式: yield 1 - 这种方式在 Python基础(函数部分)-day04  ...

  2. VUE2.0 饿了吗视频学习笔记(三):VUE2.0取消了v-link

    https://gitee.com/1981633/vue_study.git 源码下载地址,随笔记动态更新中 写法如下 <div class="tab-item"> ...

  3. 2 Player and N Coin

    class Solution { public void printChoices(int[] A, int[][] C) { System.out.println("硬币列表如下:&quo ...

  4. Javaweb学习笔记——(六)——————xml中jaxp两种解析方式和dom4j运用

    1.xml的scheam约束 dtd的语法:<!ElEMENT 元素名称 约束> **schema符合xml的语法,xml语句 **一个xml中可以有多个schema,多个schema使用 ...

  5. buildroot构建项目(二)--- u-boot 2017.11 建立 2440 开发板

    一.准备工作 在建立之前,先需要将下载的u-boot 拷贝一份出来解压,在此工程下进行更改和创建.同时根据前面搜索到的 mini2440开发板所在的版本,下载一份u-boot 拷贝出 mini2440 ...

  6. c# 网络验证

    #region 检查网络连接 static bool exitResult = false; /// <summary> /// 检查网络连接 /// add by wlzhang 201 ...

  7. D - Searching the String (AC自动机)

    题目链接:https://cn.vjudge.net/contest/281961#problem/D 题目大意:给你一个模式串,然后给你多个匹配串,匹配串的类型是包括可以覆盖的以及不可覆盖的. 具体 ...

  8. js中获取时间new date()的用法和获取时间戳

    获取时间: 1 var myDate = new Date();//获取系统当前时间 获取特定格式的时间: 1 myDate.getYear(); //获取当前年份(2位) 2 myDate.getF ...

  9. AT91RM9200---SMC简介

    1.前言 SMC(Static Memory Controller)Atmel 9200静态存储控制器的简称,它可以产生信号来控制外部静态存储和外设.SMC可通过编程寄存器来进行配置. 它有8路片选和 ...

  10. notepad++64位添加plugin manager

    - 64位的notepad++,下载下来似乎没有plugin manager,如果真没有可以下载plugin manager. - plugin manager的下载地址:https://github ...