朴素贝叶斯分类算法

1、朴素贝叶斯分类算法原理

1.1、概述

贝叶斯分类算法是一大类分类算法的总称

贝叶斯分类算法以样本可能属于某类的概率来作为分类依据

朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立

P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

1.2、算法思想

朴素贝叶斯的思想是这样的:

如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A

通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?

在你的脑海中,有这么一个判断流程:

1、这个人的肤色是黑色 <特征>

2、黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>

3、没有其他辅助信息的情况下,最好的判断就是非洲人

这就是朴素贝叶斯的思想基础。

再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?

提取特征:

肤色: 黑

语言: 英语

黑色人种来自非洲的概率: 80%

黑色人种来自于美国的概率:20%

讲英语的人来自于非洲的概率:10%

讲英语的人来自于美国的概率:90%

在我们的自然思维方式中,就会这样判断:

这个人来自非洲的概率:80% * 10% = 0.08

这个人来自美国的概率:20% * 90% =0.18

我们的判断结果就是:此人来自美国!

其蕴含的数学原理如下:

p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)

P(类别 | 特征)=P(特征 | 类别)*P(类别) / P(特征)

1.3、算法步骤

1、分解各类先验样本数据中的特征

2、计算各类数据中,各特征的条件概率

(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)

3、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)

4、计算各特征的各条件概率的乘积,如下所示:

判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....

判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....

判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....

......

5、结果中的最大值就是该样本所属的类别

1.4、算法应用举例

大众点评、淘宝等电商上都会有大量的用户评论,比如:

1、衣服质量太差了!!!!颜色根本不纯!!!

2、我有一有种上当受骗的感觉!!!!

3、质量太差,衣服拿到手感觉像旧货!!!

4、上身漂亮,合身,很帅,给卖家点赞

5、穿上衣服帅呆了,给点一万个赞

6、我在他家买了三件衣服!!!!质量都很差!

0

0

0

1

1

0

 

其中1/2/3/6是差评,4/5是好评

现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:

a、这么差的衣服以后再也不买了

b、帅,有逼格

……

1.5、算法应用流程

1、分解出先验数据中的各特征

(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)

2、计算各类别(好评、差评)中,各特征的条件概率

(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)

3、分解出待分类样本的各特征

(比如分解a: “差” “衣服” ……)

4、计算类别概率

P(好评) = p(好评|“差”) *p(好评|“衣服”)*……

P(差评) = p(差评|“差”) *p(差评|“衣服”)*……

5、显然P(差评)的结果值更大,因此a被判别为“差评”

1.6、朴素贝叶斯分类算法案例

大体计算方法:

P(好评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 好评) * P(好评) / P(单词1,单词2,单词3)

    因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 好评) P(好评)

           每个单词之间都是相互独立的---->P(单词1 | 好评)P(单词2 | 好评)P(单词3 | 好评)*P(好评)

P(单词1 | 好评) = 单词1在样本好评中出现的总次数/样本好评句子中总的单词数

P(好评) = 样本好评的条数/样本的总条数

同理:

P(差评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 差评) * P(差评) / P(单词1,单词2,单词3)

    因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 差评) P(差评)

           每个单词之间都是相互独立的---->P(单词1 | 差评)P(单词2 | 差评)P(单词3 | 差评)*P(差评)

 #!/usr/bin/python
# coding=utf-8
from numpy import * # 过滤网站的恶意留言 侮辱性:1 非侮辱性:0
# 创建一个实验样本
def loadDataSet():
postingList = [['my','dog','has','flea','problems','help','please'],
['maybe','not','take','him','to','dog','park','stupid'],
['my','dalmation','is','so','cute','I','love','him'],
['stop','posting','stupid','worthless','garbage'],
['mr','licks','ate','my','steak','how','to','stop','him'],
['quit','buying','worthless','dog','food','stupid']]
classVec = [0,1,0,1,0,1]
return postingList, classVec # 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet = set([]) # 创建一个空集
for document in dataSet:
vocabSet = vocabSet | set(document) # 创建两个集合的并集
return list(vocabSet) # 将文档词条转换成词向量
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
# returnVec[vocabList.index(word)] = 1 # index函数在字符串里找到字符第一次出现的位置 词集模型
returnVec[vocabList.index(word)] += 1 # 文档的词袋模型 每个单词可以出现多次
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec # 朴素贝叶斯分类器训练函数 从词向量计算概率
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
# p0Num = zeros(numWords); p1Num = zeros(numWords)
# p0Denom = 0.0; p1Denom = 0.0
p0Num = ones(numWords); # 避免一个概率值为0,最后的乘积也为0
p1Num = ones(numWords); # 用来统计两类数据中,各词的词频
p0Denom = 2.0; # 用于统计0类中的总数
p1Denom = 2.0 # 用于统计1类中的总数
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# p1Vect = p1Num / p1Denom
# p0Vect = p0Num / p0Denom
p1Vect = log(p1Num / p1Denom) # 在类1中,每个次的发生概率
p0Vect = log(p0Num / p0Denom) # 避免下溢出或者浮点数舍入导致的错误 下溢出是由太多很小的数相乘得到的
return p0Vect, p1Vect, pAbusive # 朴素贝叶斯分类器
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify*p1Vec) + log(pClass1)
p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
if p1 > p0:
return 1
else:
return 0 def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = ['love','my','dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
testEntry = ['stupid','garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb) # 调用测试方法----------------------------------------------------------------------
testingNB()

运行结果:

朴素贝叶斯分类算法介绍及python代码实现案例的更多相关文章

  1. NBC朴素贝叶斯分类器 ————机器学习实战 python代码

    这里的p(y=1|x)计算基于朴素贝叶斯模型(周志华老师机器学习书上说的p(xi|y=1)=|Dc,xi|/|Dc|) 也可以基于文本分类的事件模型 见http://blog.csdn.net/app ...

  2. 《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

    ============================================================================================ <机器学 ...

  3. 利用朴素贝叶斯分类算法对搜狐新闻进行分类(python)

    数据来源  https://www.sogou.com/labs/resource/cs.php介绍:来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据,提供URL ...

  4. Apriori算法介绍(Python实现)

    导读: 随着大数据概念的火热,啤酒与尿布的故事广为人知.我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们.本文首先对Apriori算 ...

  5. 朴素贝叶斯分类算法-----java

    1.贝叶斯分类的基础--贝叶斯定理 已知某条件概率.怎样得到两个事件交换后的概率,也就是在已知P(A|B)的情况下怎样求得P(B|A). 这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A ...

  6. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  7. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  8. 神经网络BP算法C和python代码

    上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输 ...

  9. 光照问题之常见算法比较(附Python代码)

    一.灰度世界算法 ① 算法原理 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,R,G,B三个分量的平均值趋于同一灰度值Gray.从物理意义上讲,灰色世界法假设自然界景物 ...

随机推荐

  1. JAVA泛型中的类型擦除及为什么不支持泛型数组

    一,数组的协变性(covariant array type)及集合的非协变性 设有Circle类和Square类继承自Shape类. 关于数组的协变性,看代码: public static doubl ...

  2. spring cloud 学习

    on going... 微服务势在必行,要开始学点相关的东西了,fighting!!! 注册中心 网关 负载均衡 限流 等等.

  3. mysql 原理 ~ checkpoint

    一 简介:今天咱们来聊聊checkpoint 二 定义: checkpoin是重做日志对数据页刷新到磁盘的操作做的检查点,通过LSN号保存记录,作用是当发生宕机等crash情况时,再次启动时会查询ch ...

  4. 使用CSS将图像对齐

    相对于<img>元素的align特性来说,越来越多的网页设计人员使用float属性来对齐图像.可以采用两种方式来实现对齐.为了确保文本不会与图像的边缘接触,我们经常会给图像增加一个外边距. ...

  5. 用Quartz 2D画小黄人

    第一步: 先创建一个OneView类,并在storyboard里边拖拽一个UIview,将这个UIview的类改成OneView.如图所示: 第二步: 在新创建的Oneview里,补齐下列代码: // ...

  6. linux挂载硬盘以及卸载硬盘

    1.在vmware添加硬盘 2.输入fdisk -l 查看新增加的硬盘 3.分区初始化 4.指定文件系统 5.修改fstab文件 fstab: 6.刷新验证 mount -a 挂载定义在/etc/fs ...

  7. 【ARTS】01_03_左耳听风-20181126~1202

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  8. MySQL— pymysql and SQLAlchemy

    目录 一.pymysql 二.SQLAlchemy 一.pymysql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同. 1. 下载安装 #在终端直接运行 pip ...

  9. mono修改配置

    当前mono安装目录为:/home/mono,安装成功后修改配置需进入这个路径: cd /home/mono 1.修改TcpBinaryFrameManager.cs文件 cd /home/mono/ ...

  10. Linux系统7z文件解压

    获取p7zip_16.02_src_all.tar.bz2 1.解压 tar jxvf p7zip_16.02_src_all.tar.bz2 2.编译 cd p7zip_16.02 make &am ...