某国王需要修路,王国有一个首都和多个城市,需要修路。已经有修路计划了,但是修路费用太高。

为了减少修路费用,国王决定从计划中去掉一些路,但是需要满足一下两点:

  1. 保证所有城市都能连通
  2. 所有城市到首都的最短路不变

思路:

在Dijkstra找最短路的时候,就记录一下费用

if(d[e.to] > d[v] + e.dist)
{
...
prev_min_cost[e.to] = e.cost; // 最短路必经之路,则费用也必须要
}
else if(d[e.to] == d[v] + e.dist) // 最短路可选择之路,选择最小的费用连接
prev_min_cost[e.to] = min(prev_min_cost[e.to], e.cost);

程序

#include <iostream>
#include <queue>
#include <functional>
#include <cstring>
using namespace std;
struct edge
{
int to, dist, cost;
edge(int to, int dist, int cost) : to(to), dist(dist), cost(cost) {}
bool operator<(const edge &b) const
{
return dist > b.dist;
}
};
vector<edge> G[10005];
int N, M; // 节点数,道路数
int d[10005]; // 距离源点s(s==1)的最小距离
int prev_min_cost[10005]; // 节点的邻接边最小花费
int ans;
void dijkstra(int s)
{
memset(d, 0x3f, sizeof(d));
memset(prev_min_cost, 0x3f, sizeof(prev_min_cost));
d[s] = 0;
priority_queue<edge> que;
que.push(edge(s, d[s], 0));
while (!que.empty())
{
edge p = que.top(); que.pop();
int v = p.to;
if (d[v] < p.dist) continue;
for (int i = 0; i<G[v].size(); ++i)
{
edge e = G[v][i];
if (d[e.to] > d[v] + e.dist)
{
d[e.to] = d[v] + e.dist;
que.push(edge(e.to, d[e.to], G[v][i].cost));
prev_min_cost[e.to] = e.cost; // 最短路必经之路,则费用也必须要
}
else if (d[e.to] == d[v] + e.dist) // 最短路可选择之路,选择最小的费用连接
prev_min_cost[e.to] = min(prev_min_cost[e.to], e.cost);
}
}
} void solve()
{
dijkstra(1);
for (int u = 2; u <= N; ++u) ans += prev_min_cost[u]; // 求出所有必须的费用(n-1条边)
cout << ans << endl;
} int main()
{
int u, v, d, c;
while (cin >> N >> M)
{
for (int u = 1; u <= N; ++u) G[u].clear();
ans = 0;
if (N == M && N == 0) break;
for (int i = 0; i < M; ++i)
{
cin >> u >> v >> d >> c;
G[u].push_back(edge(v, d, c)); // 构图
G[v].push_back(edge(u, d, c));
}
solve();
}
return 0;
}

AOJ 2249 Road Construction (dijkstra)的更多相关文章

  1. AOJ 2249 Road Construction(Dijkstra+优先队列)

    [题目大意] http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2249 [题目大意] 一张无向图,建造每条道路需要的费用已经给出, 现 ...

  2. Aizu-2249 Road Construction(dijkstra求最短路)

    Aizu - 2249 题意:国王本来有一个铺路计划,后来发现太贵了,决定删除计划中的某些边,但是有2个原则,1:所有的城市必须能达到. 2:城市与首都(1号城市)之间的最小距离不能变大. 并且在这2 ...

  3. Aizu2249 Road Construction(dijkstra优化+思路 好题)

    https://vjudge.net/problem/Aizu-2249 感觉这题和2017女生赛的Deleting Edge思路很像,都是先找最短路,然后替换边的. 但是这题用最朴素的dijkstr ...

  4. 迪杰斯特拉(dijkstra)算法的简要理解和c语言实现(源码)

    迪杰斯特拉(dijkstra)算法:求最短路径的算法,数据结构课程中学习的内容. 1 . 理解 算法思想::设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合 ...

  5. 最短路径之迪杰斯特拉(Dijkstra)算法

    迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...

  6. 理解最短路径——迪杰斯特拉(dijkstra)算法

    原址地址:http://ibupu.link/?id=29 1.       迪杰斯特拉算法简介 迪杰斯特拉(dijkstra)算法是典型的用来解决最短路径的算法,也是很多教程中的范例,由荷兰计算机科 ...

  7. 图论——迪杰斯特拉算法(Dijkstra)实现,leetcode

    迪杰斯特拉算法(Dijkstra):求一点到另外一点的最短距离 两种实现方法: 邻接矩阵,时间复杂度O(n^2) 邻接表+优先队列,时间复杂度O(mlogn)(适用于稀疏图) (n:图的节点数,m:图 ...

  8. 算法-迪杰斯特拉算法(dijkstra)-最短路径

    迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...

  9. 数据结构与算法——迪杰斯特拉(Dijkstra)算法

    tip:这个算法真的很难讲解,有些地方只能意会了,多思考多看几遍还是可以弄懂的. 应用场景-最短路径问题 战争时期,胜利乡有 7 个村庄 (A, B, C, D, E, F, G) ,现在有六个邮差, ...

随机推荐

  1. Said

    呃~~生活中的每天都会经历很多事儿,而影响结果的无非就是人对事物的处理方式和对事物的处理态度~~ 在上学期间,有时考试不理想,我都会进行反思,对不该错的题巩固在三,对不会做的题查缺补漏……因为不能不思 ...

  2. Nginx 学习笔记(五)nginx-vod-module 模块

    nginx-vod-module 一.编译 ./configure \ --user=www \ --group=www \ --prefix=/usr/local/openresty \ --wit ...

  3. springboot(十二):springboot单元测试、打包部署

    单元测试 1.在pom包中添加spring-boot-starter-test包引用 <dependency> <groupId>org.springframework.boo ...

  4. C++中返回值

    函数的返回值用于初始化在调用函数是创建的临时对象. 1.返回值为非引用类型: 会将函数的返回值复制给临时对象.跟实参初始化形参的方式一样. 2.返回值为引用类型: 没有复制返回值,返回的是对象本身.返 ...

  5. luogu P4568 [JLOI2011]飞行路线

    传送门 看到免费次数\(k\)最多只有10,可以考虑构建\(k+1\)层的分层图,即每一层正常连边,上下两层对应点连边权为0的单向边,最后对所有层里面的\(di_t\)取\(\max\)救星了 #in ...

  6. luogu P4778 Counting swaps

    计数套路题?但是我连套路都不会,,, 拿到这道题我一脸蒙彼,,,感谢@poorpool 大佬的博客的指点 先将第\(i\)位上的数字\(p_i\)向\(i\)连无向边,然后构成了一个有若干环组成的无向 ...

  7. servlet相关

    servlet是在服务器端运行的一个小程序.一个servlet就是一个java类,并且可以通过“请求-响应”编程模型来访问的这个驻留在服务器内存里的servlet程序. 1.生命周期 2.内置对象 r ...

  8. git进阶命令

    首先, clone 一个远端仓库,到其目录下: $ Git clone git://example.com/myproject $ cd myproject 然后,看看你本地有什么分支: $ git ...

  9. vue2.0环境安装

    参考网站http://www.open-open.com/lib/view/open1476240930270.html (以上博客vue init webpack-simple 工程名字<工程 ...

  10. linux笔记_day05

    1.bash以及特性 shell:外壳 GUI:KDE,Gnome,Xfce CLI:sh,csh,ksh,bash(born again shell) 进程:在每个进程看来,当前主机上只存在内核和当 ...