Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 Hive 的 10 倍以上。Presto 可以查询包括 Hive、Cassandra 甚至是一些商业的数据存储产品,单个 Presto 查询可合并来自多个数据源的数据进行统一分析。Presto 的目标是在可期望的响应时间内返回查询结果,Facebook 在内部多个数据存储中使用 Presto 交互式查询,包括 300PB 的数据仓库,超过 1000 个 Facebook 员工每天在使用 Presto 运行超过 3 万个查询,每天扫描超过 1PB 的数据。

目录:

  • presto架构
  • presto低延迟原理
  • presto存储插件
  • presto执行过程
  • presto引擎对比

Presto架构


  • Presto查询引擎是一个Master-Slave的架构,由下面三部分组成:
    1. 一个Coordinator节点
    2. 一个Discovery Server节点
    3. 多个Worker节点
  • Coordinator: 负责解析SQL语句,生成执行计划,分发执行任务给Worker节点执行
  • Discovery Server: 通常内嵌于Coordinator节点中
  • Worker节点: 负责实际执行查询任务,负责与HDFS交互读取数据
  • Worker节点启动后向Discovery Server服务注册,Coordinator从Discovery Server获得可以正常工作的Worker节点。如果配置了Hive Connector,需要配置一个Hive MetaStore服务为Presto提供Hive元信息
  • 更形象架构图如下:

Presto低延迟原理


  • 完全基于内存的并行计算
  • 流水线式计算作业
  • 本地化计算
  • 动态编译执行计划
  • GC控制

Presto存储插件


  • Presto设计了一个简单的数据存储的抽象层, 来满足在不同数据存储系统之上都可以使用SQL进行查询。
  • 存储插件(连接器,connector)只需要提供实现以下操作的接口, 包括对元数据(metadata)的提取,获得数据存储的位置,获取数据本身的操作等。
  • 除了我们主要使用的Hive/HDFS后台系统之外, 我们也开发了一些连接其他系统的Presto 连接器,包括HBase,Scribe和定制开发的系统
  • 插件结构图如下:

presto执行过程


  • 执行过程示意图:
  • 提交查询:用户使用Presto Cli提交一个查询语句后,Cli使用HTTP协议与Coordinator通信,Coordinator收到查询请求后调用SqlParser解析SQL语句得到Statement对象,并将Statement封装成一个QueryStarter对象放入线程池中等待执行,如下图:示例SQL如下
  • select c1.rank, count(*) from dim.city c1 join dim.city c2 on c1.id = c2.id where c1.id > 10 group by c1.rank limit 10;
  • 逻辑执行过程示意图如下:
  • 上图逻辑执行计划图中的虚线就是Presto对逻辑执行计划的切分点,逻辑计划Plan生成的SubPlan分为四个部分,每一个SubPlan都会提交到一个或者多个Worker节点上执行
  • SubPlan有几个重要的属性planDistribution、outputPartitioning、partitionBy属性整个执行过程的流程图如下:
    1. PlanDistribution:表示一个查询阶段的分发方式,上图中的4个SubPlan共有3种不同的PlanDistribution方式

      • Source:表示这个SubPlan是数据源,Source类型的任务会按照数据源大小确定分配多少个节点进行执行
      • Fixed:  表示这个SubPlan会分配固定的节点数进行执行(Config配置中的query.initial-hash-partitions参数配置,默认是8)
      • None:  表示这个SubPlan只分配到一个节点进行执行
    2. OutputPartitioning:表示这个SubPlan的输出是否按照partitionBy的key值对数据进行Shuffle(洗牌), 只有两个值HASH和NONE
  • 在上图的执行计划中,SubPlan1和SubPlan0 PlanDistribution=Source,这两个SubPlan都是提供数据源的节点,SubPlan1所有节点的读取数据都会发向SubPlan0的每一个节点;SubPlan2分配8个节点执行最终的聚合操作;SubPlan3只负责输出最后计算完成的数据,如下图:
  • SubPlan1和SubPlan0  作为Source节点,它们读取HDFS文件数据的方式就是调用的HDFS InputSplit API,然后每个InputSplit分配一个Worker节点去执行,每个Worker节点分配的InputSplit数目上限是参数可配置的,Config中的query.max-pending-splits-per-node参数配置,默认是100
  • SubPlan1的每个节点读取一个Split的数据并过滤后将数据分发给每个SubPlan0节点进行Join操作和Partial Aggr操作
  • SubPlan0的每个节点计算完成后按GroupBy Key的Hash值将数据分发到不同的SubPlan2节点
  • 所有SubPlan2节点计算完成后将数据分发到SubPlan3节点
  • SubPlan3节点计算完成后通知Coordinator结束查询,并将数据发送给Coordinator

presto引擎对比


  • 与hive、SparkSQL对比结果图
 https://www.cnblogs.com/tgzhu/p/6033373.html

Presto 架构和原理简介(转)的更多相关文章

  1. Presto架构及原理

    Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 ...

  2. presto架构和原理

    Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 ...

  3. Hbase架构与原理

    Hbase架构与原理 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang所撰写的Google论文"Bigtable:一个结构化数据的分布式存储系统".就 ...

  4. kafka原理简介并且与RabbitMQ的选择

    kafka原理简介并且与RabbitMQ的选择 kafka原理简介,rabbitMQ介绍,大致说一下区别 Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和 ...

  5. Oracle Golden Gate原理简介

    Oracle Golden Gate原理简介 http://www.askoracle.org/oracle/HighAvailability/20140109953.html#6545406-tsi ...

  6. storm架构及原理

    storm 架构与原理 1 storm简介 1.1 storm是什么 如果只用一句话来描述 storm 是什么的话:分布式 && 实时 计算系统.按照作者 Nathan Marz 的说 ...

  7. Hbase架构与原理(转)

    Hbase架构与原理 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”.就像Bigtable利 ...

  8. HBase的基本架构及其原理介绍

    1.概述:最近,有一些工程师问我有关HBase的基本架构的问题,其实这个问题仅仅说架构是非常简单,但是需要理解.在这里,我觉得可以用HDFS的架构作为借鉴.(其实像Hadoop生态系统中的大部分组建的 ...

  9. storm 原理简介及单机版安装指南——详细版【转】

    storm 原理简介及单机版安装指南 本文翻译自: https://github.com/nathanmarz/storm/wiki/Tutorial 原文链接自:http://www.open-op ...

随机推荐

  1. Python全局解释器锁

    超过十年以上,没有比解释器全局锁(GIL)让Python新手和专家更有挫折感或者更有好奇心.    Python的底层 要理解GIL的含义,我们需要从Python的基础讲起.像C++这样的语言是编译型 ...

  2. 转 关于Https协议中的ssl加密解密流程

    关于Https协议中的ssl加密解密流程 2016年09月28日 09:51:15 阅读数:14809 转载自:http://www.cnblogs.com/P_Chou/archive/2010/1 ...

  3. <构建之法>阅读笔记6

    第九章:项目经理 是讲项目经理的作用功能和重要性,书里面主要讲的是微软的PM(Programe Manager)和其他团队PM(Project Manager)的区别,还介绍了PM的能力要求以及人物, ...

  4. 练习|Django-多表

    models.py from django.db import models # Create your models here. class Author(models.Model): nid = ...

  5. 【Java】 剑指offer(46) 把数字翻译成字符串

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给定一个数字,我们按照如下规则把它翻译为字符串:0翻译成" ...

  6. [微信小程序] 微信小程序下拉滚动选择器picker绑定数据的两种方式

    小程序 picker 多列选择器 数据动态获取 需求是将各校区对应各班级的数据 以两列选择器的方式展示出来,并且可以在选择完成之后记录选结果参数. 校区数据 和 班级数据 分别是两个接口,以 校区 t ...

  7. POJ 3304 Segments (叉乘判断线段相交)

    <题目链接> 题目大意: 给出一些线段,判断是存在直线,使得该直线能够经过所有的线段.. 解题思路: 如果有存在这样的直线,过投影相交区域作直线的垂线,该垂线必定与每条线段相交,问题转化为 ...

  8. html+css基础知识

    这是自己学习html时候做的一些记录,供大家参考 <!-- 块和内联 块元素:独占一行的元素 div p h ul div没有任何语义,就是一个纯粹的快元素 就是为了方便布局 span是内联元素 ...

  9. Orleans部署

    一.配置指南 1,客户端配置 2,服务端配置 3,典型配置 4,配置.NET垃圾收集 5,SQL系统存储 二.监控 1,运行时监视 2,silo错误代码监测 3,客户端错误代码监测 三.解决部署问题 ...

  10. Android疑问小结

    1:为什么新建项目继承自ActionBarActivity而不是Activity? 为了版本兼容的,你新建项目时最低版本选择4.0以上,就不会出现appcompat_v7包,AndroidBarAct ...