这题计算 一张图上 能走的 点对有多少个  对于每个限制边权 , 对每条边排序,对每个查询排序

然后边做克鲁斯卡尔算法 的时候变计算就好了

#include <iostream>
#include <algorithm>
#include <string.h>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
const int maxn=;
typedef long long LL;
struct edg{
int a,b,d;
edg(int ca=,int cb=,int cd=)
{
a=ca; b=cb; d=cd;
}
bool operator <(const edg &rhs)const{
return d<rhs.d;
}
}E[];
struct query{
LL id,d;
query(LL cid=, LL cd= ){
id=cid; d=cd;
}
bool operator <(const query &rhs)const {
return d<rhs.d;
}
}Q[];
LL S[maxn];
LL num[maxn];
int fa[maxn];
int fin(int a)
{
return fa[a]=(fa[a]==a)?a:fin(fa[a]);
}
LL ans[];
int main()
{ int cas;
scanf("%d",&cas);
for(int cc=; cc<=cas; cc++)
{
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=; i<m; i++)scanf("%d%d%d",&E[i].a,&E[i].b,&E[i].d);
for(int i=; i<=n; i++){fa[i]=i;S[i]=;num[i]=;}
for(int i=; i<q; i++) {scanf("%I64d",&Q[i].d);Q[i].id=i; ans[i]=;}
sort(E,E+m);
sort(Q,Q+q);
int loc=;
LL D=;
for(int i=; i<q; i++)
{
while(loc<m&&E[loc].d<=Q[i].d){
int a=E[loc].a,b=E[loc].b;
a=fin(a);
b=fin(b);
if(a==b){ loc++; continue; }
D=D-S[a]-S[b];
fa[b]=a;
num[a]+=num[b];
S[a]=1LL*num[a]*(num[a]-);
D=D+S[a];
loc++;
}
ans[Q[i].id]=D;
}
for(int i=; i<q; i++)
printf("%I64d\n",ans[i]);
}
return ;
}

hdu5441 并查集+克鲁斯卡尔算法的更多相关文章

  1. PKUACM 2018 D chocolate【并查集+克鲁斯卡尔】

    传送:http://poj.openjudge.cn/practice/C18D/ 依然是课件截图 #include<iostream> #include<cstdio> #i ...

  2. hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  3. 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...

  4. 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...

  5. 最小生成树之Kruskal(克鲁斯卡尔)算法

    学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所 ...

  6. 最小生成树--克鲁斯卡尔算法(Kruskal)

    按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...

  7. 最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现

    算法描述 克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况. 算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做. 并查集的 ...

  8. 最小生成树——Kruscal(克鲁斯卡尔算法)

    一.核心思想 ​ 将输入的数据由小到大进行排序,再使用并查集算法(传送门)将每个点连接起来,同时求和. ​ 个人认为这个算法比较偏向暴力,有些题可能会超时. 二.例题 洛谷-P3366 题目地址:ht ...

  9. HDU 1233 还是畅通工程(模板——克鲁斯卡尔算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1233 题意描述: 输入n个城镇以及n*(n-1)/2条道路信息 计算并输出将所有城镇连通或者间接连通 ...

随机推荐

  1. 转:环绕通知返回值 object 类型

    遇到 AOP 环绕通知报错  “return value from advice does not match primitive return type for: public boolean” 百 ...

  2. 树和二叉树->基础知识

    树的表示方法 1 一般表示法 2 广义表表示法 3 凹入表示法 树的基本术语: 树:n(n>=0)个结点的有限集 结点:包含一个数据元素及若干指向其子树的分支 结点的度:结点拥有的子树数成为结点 ...

  3. 《mongoDB》索引

    一:基础操作 创建单列索引 语法: >db.collection.createIndex(keys, options) 语法中 Key 值为你要创建的索引字段,1 为指定按升序创建索引,如果你想 ...

  4. Java基础知识之锁

    Java中实现锁的方式有多种,并且锁的分类也有很多,这篇文章会从锁分类方面简单介绍各分类的锁的特点. 悲观锁和乐观锁 悲观锁:先假设别人也会对数据就行修改,所以先获得锁再进行操作.一个县城在获得锁之后 ...

  5. python编码类型互转总结

    1.只有在unicode下才能将utf-8与gbk互转2.unicode是在内存中使用,bytes是文件存储和网络传输时使用-------------------------------------- ...

  6. ansible--我的几个报错

    我的几个报错: 1.远程复制失败 [root@localhost ~ ]#scp -r .ssh 192.168.10.145:/root/ root@192.168.10.145's passwor ...

  7. MVVM软件设计模式(转)

    add by zhj: MVVM是一种软件设计模式,这里要说一下设计模式,我们通常所的设计模式是指面向对象中的设计模式,用在面向对象编程语言中.但软件设计模式是更高一个级别的设计模式,两者不是同一个东 ...

  8. java应用零停机,时间索引重建(reindex)

    一个field的设置是不能被修改的,如果要修改一个Field,那么应该重新按照新的mapping,建立一个index,然后将数据批量查询出来,重新用bulk api写入index中 批量查询的时候,建 ...

  9. 27-5-LTDC控制LCD显示屏

    1.显示原理 (1).液晶显示是分2层显示的,配置层级结构体参数再将数据输出到混合器合成,显示再液晶上. (2).LTDC初始化结构体 控制 LTDC 涉及到非常多的寄存器,利用 LTDC 初始化结构 ...

  10. what's the python之python介绍

    其实这一篇文章的大部分都是啰嗦话,大部分在百度百科中都有详尽的叙述.既然决定学python了就要风雨兼程,你不用洞悉python到底是什么,你只要知道这是一门编程语言,跟Java.C++等语言一样都是 ...