一、矩阵
Mat
I,img,I1,I2,dst,A,B;
double k,alpha;
Scalar s;

//注意Mat的行列号是从0开始的
//定义矩阵a,b,c
Mat a,b,c;
//生成三行四列的全一矩阵 CV_64F表示精度
a=Mat::ones(,,CV_64F);
//a=mat::zeros(3,4,CV_64F);为生成全0
//把矩阵a复制给矩阵b 注意不能用b=a
b=a.clone();
//矩阵a每一个元素乘以2
a=a.mul();
//矩阵b每一个元素乘以4
b=b.mul();
//矩阵a点乘矩阵b
c=a.mul(b);
cout<<"a"<<a<<endl;
cout<<"b"<<b<<endl;
cout<<"c"<<c<<endl;

1.加法
I=I1+I2;//等同add(I1,I2,I);
add(I1,I2,dst,mask,dtype);
scaleAdd(I1,scale,I2,dst);//dst=scale*I1+I2;
2.减法
absdiff(I1,I2,I);//I=|I1-I2|;
A-B;A-s;s-A;-A;
subtract(I1,I2,dst);
3.乘法
I=I.mul(I);I.mul(I,3);-->I=3*I.^2

Mat C=A.mul(5/B);//==divide(A,B,C,5);
A*B;矩阵相乘
I=alpha*I;
Mat::cross(Mat);//三维向量(或矩阵)的叉乘,A.cross(B)
double Mat::dot(Mat);//2个向量(或矩阵)的点乘的结果,A.dot(B)
mul-------multiply
pow(src,double p,dst);//如果p是整数dst(I)=src(I)^p;其他|src(I)|^p
4.除法
divide(I1,I2,dst,scale,int
dtype=-1);//dst=saturate_cast(I1*scale/I2);
A/B;alpha/A;都是点除
5.转换
I.convertTo(I1,CV_32F);//类型转换
A.t();//转置
flip(I,dst,int
flipCode);//flipCode=0是上下翻转,>0时左右翻转,<0时一起来
sqrt(I,dst);
cvtColor(I,dst,int code,int dstCn=0);
resize:对图像进行形变
--------------------------------------------------------------------------

6.其他
Scalar s=sum(I);各通道求和
norm,countNonZero,trace,determinant,repeat都是返回Mat或者Scalar
countNonZero:用来统计非零的向量个数.(rows*cols个)
Scalar m=mean(I);//各通道求平均
Mat RowClone=C.row(1).clone();//复制第2行
addWeight(I1,alpha,I2,beta,gamma,dst,int
dtype=-1);//dst=saturate(alpha*I1+beta*I2+gamma);dtype是dst的深度
----------------------------------------------------------------------------

7.运算符
log10()
exp(I,dst);//dst=exp(I);计算每个数组元素的指数
log(I,dst);//如果Iij!=0;则dstij=log(|Iij|)
randu(I,Scalar::all(0),Scalar::all(255));
Mat::t()转置
Mat::inv(int
method=DECOMP_LU)求逆。method=DECOMP_CHOLESKY(专门用于对称,速度是LU的2倍),DECOMP_SVD//A.inv();A.inv()*B;

invert(I1,dst,int method=DECOMP_LU);//用法同上
MatExpr abs(Mat)//求绝对值
A cmpop B;A compop alpha;alpha cmpop
A;这里cmpop表示>,>=,==,!=,<=,<等,结果是CV_8UC1的mask的0或255
按位运算:A logicop B;A logicop s;s logicop
A;~A;这里logicop代表&,|,^
bitwise_not(I,dst,mask);//inverts所有的队列
还有bitwise_and,bitwise_or,bitwise_xor,
min(A,B);min(A,alpha);max(A,B);max(A,alpha);都返回MatExpr,返回的dst和A的类型一样

double determinant(Mat);//行列式
bool eigen(I1,dst,int lowindex=-1,int highindex=-1);//
bool eigen(I1,dst,I,int...);//得到特征值向量dst和对应特征值的特征向量
minMaxLoc(I1,&minVal,&maxVal,Point *minLoc=0,Point*
MaxLoc=0,mask);
//minLoc是2D时距原点最小的点(未考证)
------------------------------------------------------------------------------

8.初始化
Mat
I(img,Rect(10,10,100,100));//用一块地方初始化。
Mat I=img(Range:all(),Range(1,3));//所有行,1~3列
Mat I=img.clone();//完全复制
img.copyTo(I);//传递矩阵头
Mat
I(2,2,CV_8UC3,Scalar(0,0,255));//I=[0,0,255,0,0,255;0,0,255,0,0,255];

Mat E=Mat::eye(4,4,CV_64F);//对角矩阵
Mat O=Mat::ones(2,2,CV_32F);//全一矩阵
Mat Z=Mat::zeros(3,3,CV_8UC1);//全零矩阵
Mat C=(Mat_(2,2)<<0,-1,2,3);//如果是简单矩阵的初始化
Mat::row(i);Mat::row(j);Mat::rowRange(start,end);Mat::colRange(start,end);都只是创建个头

Mat::diag(int d);d=0是是主对角线,d=1是比主低的对角线,d=-1....
static Mat Mat::diag(const Mat& matD)
Mat::setTo(Scalar &s);以s初始化矩阵
Mat::push_back(Mat);在原来的Mat的最后一行后再加几行
Mat::pop_back(size_t nelems=1);//移出最下面几行
-------------------------------------------------------------------------------

9.矩阵读取和修改
(1)1个通道:
for(int i=0;i
for(int j=0;j
I.at(i,j)=k;
(2)3个通道:
Mat_ _I=I;//他没有4个通道寸,只有3个通道!
for(int i=0;i
for(int j=0;j
{
_I(i,j)[0]=b;
_I(i,j)[1]=g;
_I(i,j)[2]=r;
}
I=_I;
------------------------------------------------------------
或者直接用I.at(i,j)[0]....
-------------------------------------------------
float *s;
for(i=0;i
{s=proImg.ptr(i);
for(j=0;j
{a1=s[3*j+1]-m1;
a2=s[3*j+2]-m2;}}
-------------------------------------------------------------------------

(3)其他机制
I.rows(0).setTo(Scalar(0));//把第一行清零
saturate_cast(...);//可以确保内容为0~255的整数
Mat::total();返回一共的元素数量
size_t
Mat::elemSize();返回元素的大小:CV_16SC3-->3*sizeof(short)-->6
size_t
Mat::elemSize1();返回元素一个通道的大小CV_16SC3-->sizeof(short)-->2

int Mat::type()返回他的类型CV_16SC3之类
int Mat::depth()返回深度:CV_16SC3-->CV_16S
int Mat::channels()返回通道数
size_t Mat:step1()返回一个被elemSize1()除以过的step
Size Mat::size()返回Size(cols,rows);如果大于2维,则返回(-1,-1),都是先宽再高的
bool Mat::empty()如果没有元素返回1,即Mat::total()==0或者Mat::data==NULL
uchar *Mat::ptr(int i=0)指向第i行
Mat::at(int i)(int i,int j)(Point pt)(int i,int j,int k)
RNG随机类:next,float RNG::uniform(float a,float b);..
double RNG::gaussian(double sigma);
RNG::fill(I,int distType,Mat low,Mat up);//用随机数填充
randu(I,low,high);
randn(I,Mat mean,Mat stddev);
reduce(I,dst,int dim,int reduceOp,int
dtype=-1);//可以统计每行或每列的最大、最小、平均值、和
setIdentity(dst,Scalar &value=Scalar(1));//把对角线替换为value
//效果等同:Mat A=Mat::eye(4,3,CV_32F)*5;
--------------------------------------------------------------

10.较复杂运算
gemm(I1,I2,alpha,I3,beta,dst,int
flags=0);//I1至少是浮点型,I2同I1,flags用来转置
//gemm(I1,I2,alpha,I3,beta,dst,GEMM_1_T,GEMM_3_T);-->dst=alpha*I1.t()*I2+beta*I3.t();可用此完全代替此函数

mulTransposed(I,dst,bool aTa,Mat delta=noArray(),double scale=1,int
rtype=-1);
//I是1通道的,和gemm不同,他可用于任何类型。
//如果aTa=flase时,dst=scale*(I-delta).t()*(I-delta);
//如果是true,dst=scale*(I-delta)(I-delta).t();
calcCovarMatrix(Mat,int,Mat,Mat,int,int=);calcCovarMatrix(Mat I,Mat
covar,Mat mean,int flags,int=);
cartToPolar//转到极坐标
compare(I1,I2,dst,cmpop);cmpop=CMP_EQ,CMP_GT,CMP_GE,CMP_LT,CMP_LE,COM_NE

completeSymm(M,bool
lowerToUpper=false);当lowerToUpper=true时Mij=Mji(ij)
变成可显示图像:convertScaleAbs(I,dst,alpha,beta);dst=saturate_cast(|alpha*I+beta|);

dct(I,dst,int
flags=0);//DCT变换,1维、2维的矩阵;flags=DCT_INVERSE,DCT_ROWS
idct,dft,idft
inRange(I1,I_low,I_up,dst);//dst是CV_8UC1,在2者之间就是255
Mahalanobis(vec1,vec2,covar);
merge(vector,Mat);//把多个Mat组合成一个和split相反
double norm(...):当src2木有时,norm可以计算出最长向量、向量距离和、向量距离和的算术平方根
solveCubic解3次方程,solvePoly解n次方程
排列:sort,sortIdx
mixChannels();对某个通道进行各种传递
-----------------------------------------------------------------

11.未懂的函数
getConvertElem,extractImageCOI,LUT

magnitude(x,y,dst);//I1,I2都是1维向量,dst=sqrt(x(I)^2+y(I)^2);
meanStdDev,
MulSpectrums(I1,I2,dst,flags);傅里叶
normalize(I,dst,alpha,beta,int normType=NORM_L2,int
rtype=-1,mask);//归一化
PCA,SVD,solve,transform,transpose
二、其他数据结构
Point2f P(5,1);
Point3f P3f(2,6,7);
vector
v;v.push_back((float)CV_PI);v.push_back(2);v.push_back(3.01f);//不断入

vector vPoints(20);//一次定义20个

三、常用方法
Mat mask=src<0;这样很快建立一个mask了

四、以后可能用到的函数
randShuffle,repeat

Opencv Mat运算(转)的更多相关文章

  1. opencv::卷积运算函数filter2D()

    opencv::卷积运算函数filter2D() 使用掩模板矩阵(kernel)计算每个像素值 与原图相比,没有黑边 int main(int argc, char** argv) { Mat src ...

  2. Matlab to OpenCV Mat

    convert Matlab matrix to OpenCV Mat. Support CV_32FC3 only currently. The Code int matlab2opencv(cv: ...

  3. OpenCV Mat数据类型及位数总结(转载)

    OpenCV Mat数据类型及位数总结(转载) 前言 opencv中很多数据结构为了达到內存使用的最优化,通常都会用它最小上限的空间来分配变量,有的数据结构也会因为图像文件格式的关系而给予适当的变量, ...

  4. OpenCV Mat数据类型指针ptr的使用

    OpenCV Mat数据类型指针ptr的使用 cv::Mat image = cv::Mat(400, 600, CV_8UC1); //宽400,长600 uchar * data00 = imag ...

  5. Qt QImage与OpenCV Mat转换

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51029382 应一个朋友的要求,整理总 ...

  6. 快速遍历OpenCV Mat图像数据的多种方法和性能分析 | opencv mat for loop

    本文首发于个人博客https://kezunlin.me/post/61d55ab4/,欢迎阅读! opencv mat for loop Series Part 1: compile opencv ...

  7. OpenCv Mat操作总结

    Author:: Maddock Date: 2015-03-23 16:33:49 转载请注明出处:http://blog.csdn.net/adong76/article/details/4053 ...

  8. OpenCV——Mat,IplImage,CvMat类型转换

    Mat,cvMat和IplImage这三种类型都可以代表和显示图像,三者区别如下 Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化. 而CvMat和IplImage类型更侧 ...

  9. opencv Mat 像素操作

    1 cv::Mat cv::Mat是一个n维矩阵类,声明在<opencv2/core/core.hpp>中.   class CV_EXPORTS Mat { public: //a lo ...

随机推荐

  1. Angularjs 根据数据结构创建动态菜单无限嵌套循环--指令版

    目标:根据数据生成动态菜单,希望可以根据判断是否有子集无限循环下去. 菜单希望的样子是这样的: 菜单数据是这样的: $scope.expanders = [{ title: 'title1', lin ...

  2. Lakeshore 中文开发界面,示例项目,飞机大战 等 Lakeshore Chinese development interface, sample project, aircraft war, etc

    Lakeshore 中文开发界面,示例项目,飞机大战 等 Lakeshore Chinese development interface, sample project, aircraft war, ...

  3. Python3Numpy——相关性协方差应用

    基本理论 Correlation Are there correlations between variables? Correlation measures the strength of the ...

  4. 搜索+剪枝——POJ 1011 Sticks

    搜索+剪枝--POJ 1011 Sticks 博客分类: 算法 非常经典的搜索题目,第一次做还是暑假集训的时候,前天又把它翻了出来 本来是想找点手感的,不想在原先思路的基础上,竟把它做出来了而且还是0 ...

  5. STL——模拟实现空间配置器

    目录 问题 SGI版本空间配置器-std::alloc 一级空间配置器 二级空间配置器 Refill.chunkAlloc函数 最后,配置器封装的simple_alloc接口 问题 我们在日常编写C+ ...

  6. Spring中 @Autowired标签与 @Resource标签 的区别(转)

    Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource. @PostConstruct及@PreDestroy. 1. @Autowi ...

  7. ArcGIS Pro 中不可用的工具

    有些可用于 ArcMap 之类的其他 ArcGIS Desktop 应用程序的地理处理工具在 ArcGIS Pro 中不可用.用于处理 ArcGIS Pro 所不支持的数据格式的地理处理工具已被移除, ...

  8. oracle的start with connect by prior如何使用

    oracle的start with connect by prior是根据条件递归查询"树",分为四种使用情况: 第一种:start with 子节点ID='...' connec ...

  9. MDX Cookbook 11 - 计算 Year Over Year 增长 (同比计算) ParallelPeriod

    这一小节主要介绍如何在一个平行期间的度量值,当前值的对比对象是指当前值的上一年,上一个季度或者其它时间级别上与当前值同一时间点上的的那个对象.有一个非常常见的需求就是对比上一年同一个时间点的某个值来判 ...

  10. 在SpringBoot中使用热部署(DevTools)

    一.简介 有时候我们开发完SpringBoot项目后,启动运行.但是经常发现代码需要反复修改,然后修改部分内容后需要再启动....这样太费时了,热部署就是用来解决这一问题.让你修改完代码后,能自动执行 ...