https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin/16001

Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs.

A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).

To illustrate why, take for example precision Pr=TP(TP+FP)Pr=TP(TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:

  • Class A: 1 TP and 1 FP
  • Class B: 10 TP and 90 FP
  • Class C: 1 TP and 1 FP
  • Class D: 1 TP and 1 FP

You can see easily that PrA=PrC=PrD=0.5PrA=PrC=PrD=0.5, whereas PrB=0.1PrB=0.1.

  • A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4Pr=0.5+0.1+0.5+0.54=0.4
  • A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123Pr=1+10+1+12+100+2+2=0.123

These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).

Micro- and macro-averages的更多相关文章

  1. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  2. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  3. Micro和Macro性能学习【转载】

    转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...

  4. 多分类评测标准(micro 和 macro)

  5. (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS

    Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in  ...

  6. Java资源大全中文版(Awesome最新版)

    Awesome系列的Java资源整理.awesome-java 就是akullpp发起维护的Java资源列表,内容包括:构建工具.数据库.框架.模板.安全.代码分析.日志.第三方库.书籍.Java 站 ...

  7. Java Bloom filter几种实现比较

    英文原始出处: Bloom filter for Scala, the fastest for JVM 本文介绍的是用Scala实现的Bloom filter. 源代码在github上.依照性能测试结 ...

  8. 【Code Tools】Java微基准测试工具JMH之入门篇

    一.JMH是什么 JMH是一个Java工具,用于构建.运行和分析用Java和其他语言编写的以JVM为目标的 nano/micro/milli/macro 基准测试. 二.基本注意事项 1)运行JMH基 ...

  9. [转]awsome-java

    原文链接 Awesome Java A curated list of awesome Java frameworks, libraries and software. Contents Projec ...

  10. 多分类评价指标python代码

    from sklearn.metrics import precision_score,recall_score print (precision_score(y_true, y_scores,ave ...

随机推荐

  1. was控制台误禁用后的恢复启用办法

    websphere是可以配置禁用控制台的,下面以was6.1.单profile.https控制台为例介绍在(误)禁用控制台后如何恢复启用控制台. 1. 禁用控制台 WCInboundAdmin--控制 ...

  2. Generative Model 与 Discriminative Model

      [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测    - 判别模型(Discriminative Model): ...

  3. git Please move or remove them before you can merge.

    git clean -d -fx "" 其中  x -----删除忽略文件已经对git来说不识别的文件 d -----删除未被添加到git的路径中的文件 f -----强制运行

  4. 学习笔记-AngularJs(二)

    在接下来学习angularjs中,我按照的就是之前 学习笔记-AngularJs(一)所讲的目录来搭建一个学习的项目,做一个互联网大佬人物简介的例子,当然也可以使用angualrjs上面提供的官方例子 ...

  5. learning ddr RTT

    Rtt: Dynamic ODT.DDR3引入的新特性.在特定的应用环境下为了更好的在数据总线上改善信号完整性, 不需要特定的MRS命令即可以改变终结强度(或者称为终端匹配).在MR2中的A9和A10 ...

  6. learning ddr init power-up initialization sequence

  7. frameset的固定放置模式,不能放入<form runat="server">中

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="admin_default.as ...

  8. [Codeforces721E]Road to Home

    Problem 有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠. 有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续 ...

  9. SmtpClient SSL 发送邮件异常排查

    上周使用 SmtpCliet 发送邮件测试,在服务端配置 SSL 465 / 993 情况 ,客户端使用 465 SSL 端口发送邮件异常,测试代码如下: System.Net.ServicePoin ...

  10. VCL界面控件DevExpress VCL Controls发布v18.2.3|附下载

    DevExpress VCL Controls是 Devexpress公司旗下最老牌的用户界面套包.所包含的控件有:数据录入,图表,数据分析,导航,布局,网格,日程管理,样式,打印和工作流等,让您快速 ...