https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin/16001

Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs.

A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).

To illustrate why, take for example precision Pr=TP(TP+FP)Pr=TP(TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:

  • Class A: 1 TP and 1 FP
  • Class B: 10 TP and 90 FP
  • Class C: 1 TP and 1 FP
  • Class D: 1 TP and 1 FP

You can see easily that PrA=PrC=PrD=0.5PrA=PrC=PrD=0.5, whereas PrB=0.1PrB=0.1.

  • A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4Pr=0.5+0.1+0.5+0.54=0.4
  • A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123Pr=1+10+1+12+100+2+2=0.123

These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).

Micro- and macro-averages的更多相关文章

  1. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  2. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  3. Micro和Macro性能学习【转载】

    转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...

  4. 多分类评测标准(micro 和 macro)

  5. (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS

    Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in  ...

  6. Java资源大全中文版(Awesome最新版)

    Awesome系列的Java资源整理.awesome-java 就是akullpp发起维护的Java资源列表,内容包括:构建工具.数据库.框架.模板.安全.代码分析.日志.第三方库.书籍.Java 站 ...

  7. Java Bloom filter几种实现比较

    英文原始出处: Bloom filter for Scala, the fastest for JVM 本文介绍的是用Scala实现的Bloom filter. 源代码在github上.依照性能测试结 ...

  8. 【Code Tools】Java微基准测试工具JMH之入门篇

    一.JMH是什么 JMH是一个Java工具,用于构建.运行和分析用Java和其他语言编写的以JVM为目标的 nano/micro/milli/macro 基准测试. 二.基本注意事项 1)运行JMH基 ...

  9. [转]awsome-java

    原文链接 Awesome Java A curated list of awesome Java frameworks, libraries and software. Contents Projec ...

  10. 多分类评价指标python代码

    from sklearn.metrics import precision_score,recall_score print (precision_score(y_true, y_scores,ave ...

随机推荐

  1. Test22455

  2. MAVEN 自定义骨架

    1)根据原由的骨架先创建出一个骨架模板,例如创建一个web框架可以先通过命令 mvn archetype:generate -DarchetypeCatalog=internal  创建出一个web的 ...

  3. ssd物体检测模型训练和测试总结

    参考网址:github:https://github.com/naisy/realtime_object_detection 2018.10.16ssd物体检测总结:切记粗略地看一遍备注就开始训练模型 ...

  4. mac mysql 操作

    参考 http://www.cnblogs.com/chenmo-xpw/p/6102933.html http://www.cnblogs.com/uoar/p/6492521.html 1.启动M ...

  5. 为什么使用 npm Scripts 构建项目

    http://www.css88.com/archives/7025#more-7025 https://github.com/damonbauer/npm-build-boilerplate 这个我 ...

  6. 每天CSS学习之border-spacing

    border-spacing是CSS2的一个属性.其作用是规定表格的相邻单元格边框之间的距离.如果表格的border-collapse属性值为collapse时,border-spacing设置无效. ...

  7. Linux 目录配置标准:FHS

    目录 应放置内容 /bin 和/user/目录下的/bin/都是用来保存的系统命令 /sbin 和/user/目录下的/sbin是用来保存root的系统命令 /boot 这个目录主要放置开机所用的文件 ...

  8. CSS--思维导图

    CSS--思维导图

  9. SQL-36 创建一个actor_name表,将actor表中的所有first_name以及last_name导入改表。

    题目描述               对于如下表actor,其对应的数据为: actor_id first_name last_name last_update 1 PENELOPE GUINESS ...

  10. DevExpress WPF v18.2新版亮点(六)

    买 DevExpress Universal Subscription  免费赠 万元汉化资源包1套! 限量15套!先到先得,送完即止!立即抢购>> 行业领先的.NET界面控件2018年第 ...