https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin/16001

Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs.

A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).

To illustrate why, take for example precision Pr=TP(TP+FP)Pr=TP(TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:

  • Class A: 1 TP and 1 FP
  • Class B: 10 TP and 90 FP
  • Class C: 1 TP and 1 FP
  • Class D: 1 TP and 1 FP

You can see easily that PrA=PrC=PrD=0.5PrA=PrC=PrD=0.5, whereas PrB=0.1PrB=0.1.

  • A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4Pr=0.5+0.1+0.5+0.54=0.4
  • A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123Pr=1+10+1+12+100+2+2=0.123

These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).

Micro- and macro-averages的更多相关文章

  1. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  2. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  3. Micro和Macro性能学习【转载】

    转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...

  4. 多分类评测标准(micro 和 macro)

  5. (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS

    Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in  ...

  6. Java资源大全中文版(Awesome最新版)

    Awesome系列的Java资源整理.awesome-java 就是akullpp发起维护的Java资源列表,内容包括:构建工具.数据库.框架.模板.安全.代码分析.日志.第三方库.书籍.Java 站 ...

  7. Java Bloom filter几种实现比较

    英文原始出处: Bloom filter for Scala, the fastest for JVM 本文介绍的是用Scala实现的Bloom filter. 源代码在github上.依照性能测试结 ...

  8. 【Code Tools】Java微基准测试工具JMH之入门篇

    一.JMH是什么 JMH是一个Java工具,用于构建.运行和分析用Java和其他语言编写的以JVM为目标的 nano/micro/milli/macro 基准测试. 二.基本注意事项 1)运行JMH基 ...

  9. [转]awsome-java

    原文链接 Awesome Java A curated list of awesome Java frameworks, libraries and software. Contents Projec ...

  10. 多分类评价指标python代码

    from sklearn.metrics import precision_score,recall_score print (precision_score(y_true, y_scores,ave ...

随机推荐

  1. Git merge && git rebase的用法

    Git merge的用法: git merge Dev // Dev表示某分支,表示在当前分支合并Dev分支 git merge -m  “Merge from Dev”  Dev //-m可以加上m ...

  2. SpringMVC+HibernateValidator,配置在properties文件中的错误信息回显前端页面出现中文乱码

    问题: 后台在springMVC中使用hibernate-validator做参数校验的时候(validator具体使用方法见GOOGLE),用properties文件配置了校验失败的错误信息.发现回 ...

  3. volatile原理解析

    Java并发编程:volatile关键字解析 volatile 有序性.可见性 volatile可以保证一定程度上有序性,即volatile前面的代码先于后面的代码先执行. 但是前.后代码,各自里面的 ...

  4. K-Means ++ 和 kmeans 区别

    Kmeans算法的缺陷 聚类中心的个数K 需要事先给定,但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适Kmeans需要人为地确定初始聚类中心 ...

  5. element-ui 表格翻页多选,数据回显

    reserve-selection与row-key结合 <el-table :data="pageData" ref="goodsTable" size= ...

  6. js之DOM元素遍历

    对于元素间的空格,IE9之前的版本不会返回文本节点,而且他所有浏览器都会返回文本节点.这样就导致 使用childNodes和firstChild等属性时的行为不一致.从而有了Element Trave ...

  7. PAT-GPLT训练集 L2-002 链表去重

    PAT-GPLT训练集 L2-002 链表去重 题目大意为给出一个单链表,去除重复的结点,输出删除后的链表,并且把被删除的结点也以链表形式输出 思路:把这个链表直接分成两个链表,再直接输出就可以 代码 ...

  8. laravel模型关联:

    一对一hasOne(用户-手机号) 一对多has Many(文章-评论) 一对多反向belongsTo(评论-文章) 多对多belongsToMany(用户-角色) 远层一对多hasManyThrou ...

  9. Java第5次

    1. 请运行以下示例代码StringPool.java,查看其输出结果.如何解释这样的输出结果?从中你能总结出什么? 显示结果: truetruefalse 总结:在Java中,内容相同的字串常量(“ ...

  10. DBProxy 读写分离使用说明

    美团点评DBProxy读写分离使用说明   目的 因为业务架构上需要实现读写分离,刚好前段时间美团点评开源了在360Atlas基础上开发的读写分离中间件DBProxy,关于其介绍在官方文档已经有很详细 ...