【BZOJ3527】【ZJOI2014】力
"FFT还不是随手写?"我终于能说这样的话了இwஇ
原题:
然后就变成俩卷积了,FFT即可
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
struct cp{
double r,i;
cp(double _r=,double _i=): r(_r),i(_i){}
cp operator+(cp x){return cp(r+x.r,i+x.i);}
cp operator-(cp x){return cp(r-x.r,i-x.i);}
cp operator*(cp x){return cp(r*x.r-i*x.i,r*x.i+i*x.r);}
};
int n;
cp a[],a_[],b[],tmp[],_x,_y;
cp e[],e_[];
int rvs[],dg[],N,L;
void fft(cp x[],int mk){
for(int i=;i<N;++i) tmp[i]=x[rvs[i]];
for(int i=;i<N;++i) x[i]=tmp[i];
for(int i=;i<=N;i<<=){
cp wn(cos(*M_PI/i),mk*sin(*M_PI/i));
for(int k=;k<N;k+=i){
cp w(,);
for(int j=k;j<k+(i>>);++j){
_x=x[j],_y=x[j+(i>>)]*w;
x[j]=_x+_y,x[j+(i>>)]=_x-_y;
w=w*wn;
}
}
}
if(mk==-) for(int i=;i<N;++i) x[i].r/=N;
}
int main(){//freopen("ddd.in","r",stdin);
cin>>n; n--;
double x;
for(int i=;i<=n;++i) scanf("%lf",&x),a[i]=cp(x);
for(int i=;i<=n;++i) a_[i]=a[n-i];
for(N=,L=;N<=(n+);N<<=,++L); N<<=,++L;
for(int i=;i<N;++i){
for(int j=i,k=;j;j>>=,++k) dg[k]=j&;
for(int j=;j<L;++j) rvs[i]=(rvs[i]<<)|dg[j];
}
for(int i=;i<=n;++i) b[i]=cp((double)/i/i);
fft(a,),fft(a_,),fft(b,);
for(int i=;i<N;++i) e[i]=a[i]*b[i];
for(int i=;i<N;++i) e_[i]=a_[i]*b[i];
fft(e,-),fft(e_,-);
for(int i=;i<=n;++i) printf("%.3lf\n",e[i].r-e_[n-i].r);
return ;
}
【BZOJ3527】【ZJOI2014】力的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- bzoj千题计划167:bzoj3527: [Zjoi2014]力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 以n=4为例: ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
随机推荐
- oo作业总结报告
oo第一次博客 以前从未真正的写过Java代码,接触Java也只是寒假的时候简单的看了看语法,不懂该如何面向对象,但没事,心里不惧,想着什么都是可以学的(直到真正开始写工程的时候,才发现自己还是太天真 ...
- day038 navicat pymysql
今日内容: 1.navicat 2.pymysql 1.navicat 需要掌握 #1. 测试+链接数据库 #2. 新建库 #3. 新建表,新增字段+类型+约束 #4. 设计表:外键 #5. 新建查询 ...
- C++面向对象实现封装线程池
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- main.jsbundle 脱离掉本地服务
我们在本地调试的时候,可以使用index.js来开启本地服务,在局域网内运行app. 但是你会发现一旦你脱离了这个局域网就会造成app无法显示 这时候我们使用main.jsbundle 1.在Reac ...
- 网页的MVC模式简介
#! /usr/bin/env python3 # -*- coding:utf-8 -*- #MVC:Model-View-Controller 模型-视图-控制器 #Python处理URL的函数就 ...
- debian服务器解决中文安装后出现乱码的问题
由于安装debian选择语言时选择了简体中文安装,但内核没有中文字库,导致某些字符显示为乱码(菱形,方块). 解决办法: 普通用户如果没有设置sudo权限,首先切换到root权限.然后: apt-ge ...
- 3.3 C++改变基类成员在派生类中的访问属性
参考:http://www.weixueyuan.net/view/6360.html 总结: 使用using声明可以改变基类成员在派生类中的访问属性. private: using book::se ...
- Centos7安装配置iptable
CentOS7默认的防火墙不是iptables,而是firewalle. 安装iptable iptable-service #先检查是否安装了iptables service iptables st ...
- DevExpress WinForms v18.2新版亮点(一)
行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了DevExpress WinForms v1 ...
- java中String的equals()和 ==
String a=new String("java"); String b=new String("java"); System.out.println(a.e ...