【BZOJ3527】【ZJOI2014】力
"FFT还不是随手写?"我终于能说这样的话了இwஇ
原题:

然后就变成俩卷积了,FFT即可
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
struct cp{
double r,i;
cp(double _r=,double _i=): r(_r),i(_i){}
cp operator+(cp x){return cp(r+x.r,i+x.i);}
cp operator-(cp x){return cp(r-x.r,i-x.i);}
cp operator*(cp x){return cp(r*x.r-i*x.i,r*x.i+i*x.r);}
};
int n;
cp a[],a_[],b[],tmp[],_x,_y;
cp e[],e_[];
int rvs[],dg[],N,L;
void fft(cp x[],int mk){
for(int i=;i<N;++i) tmp[i]=x[rvs[i]];
for(int i=;i<N;++i) x[i]=tmp[i];
for(int i=;i<=N;i<<=){
cp wn(cos(*M_PI/i),mk*sin(*M_PI/i));
for(int k=;k<N;k+=i){
cp w(,);
for(int j=k;j<k+(i>>);++j){
_x=x[j],_y=x[j+(i>>)]*w;
x[j]=_x+_y,x[j+(i>>)]=_x-_y;
w=w*wn;
}
}
}
if(mk==-) for(int i=;i<N;++i) x[i].r/=N;
}
int main(){//freopen("ddd.in","r",stdin);
cin>>n; n--;
double x;
for(int i=;i<=n;++i) scanf("%lf",&x),a[i]=cp(x);
for(int i=;i<=n;++i) a_[i]=a[n-i];
for(N=,L=;N<=(n+);N<<=,++L); N<<=,++L;
for(int i=;i<N;++i){
for(int j=i,k=;j;j>>=,++k) dg[k]=j&;
for(int j=;j<L;++j) rvs[i]=(rvs[i]<<)|dg[j];
}
for(int i=;i<=n;++i) b[i]=cp((double)/i/i);
fft(a,),fft(a_,),fft(b,);
for(int i=;i<N;++i) e[i]=a[i]*b[i];
for(int i=;i<N;++i) e_[i]=a_[i]*b[i];
fft(e,-),fft(e_,-);
for(int i=;i<=n;++i) printf("%.3lf\n",e[i].r-e_[n-i].r);
return ;
}
【BZOJ3527】【ZJOI2014】力的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- bzoj千题计划167:bzoj3527: [Zjoi2014]力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 以n=4为例: ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
随机推荐
- 哈希表概念和实现,C/C++实现
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- C++关于运算符的注意事项
1.函数调用也是一种特殊的运算符,对运算对象的个数不作限制. 2.几元运算符,是基于作用的对象的数量. 3.不同类型的运算对象进行运算,可能会出现类型转换,一般情况下小整数类型会被转换成较大的整数类型 ...
- 十五. Python基础(15)--内置函数-1
十五. Python基础(15)--内置函数-1 1 ● eval(), exec(), compile() 执行字符串数据类型的python代码 检测#import os 'import' in c ...
- Android : 获取声卡信息的测试代码
完整的编译包(android平台): 链接:http://pan.baidu.com/s/1qXMTT7I 密码:2bow /* * ALSA parameter test program * * C ...
- 4.2 C++虚成员函数
参考:http://www.weixueyuan.net/view/6371.html 总结: virtual关键字仅用于函数声明,如果函数是在类外定义,则不需要再加上virtual关键字了. 在C+ ...
- CAN总线(1)--初探(更新中)
前言: CAN总线可以控制可以使用Xilinx中IP核来直接实现,也可以使用专用的CAN芯片(例如:SJA1000)通过单片机和FPGA驱动控制来实现: 目前是使用控制器SJA1000来进行实现: C ...
- Centos7安装ansible
CentOS下部署Ansible自动化工具 1.确保机器上安装的是 Python 2.6 或者 Python 2.7 版本: python -V 2.查看yum仓库中是否存在ansible的rpm包 ...
- DevExpress ASP.NET v18.2新功能详解(一)
行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍新版本新功能.本文将介绍了DevExpress ASP.NET Cont ...
- Code First 迁移更新数据库
在使用 Code First 方式进行MVC程序设计中,更新数据库操作记录: 1.修改需要更新的Model,将应用程序重新编译 2.选择工具>库程序包管理器>程序包管理控制台,打开控制台, ...
- Final阶段第1周/共1周 Scrum立会报告+燃尽图 05
作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2484] 版本控制:https://git.coding.net/liuyy08 ...