MapReduce(一)

一。介绍

百度百科:

MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

定义:

MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义:
1)MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算集群。
2)MapReduce是一个并行计算与运行软件框架(Software Framework)。它提供了一个庞大但设计精良的并行计算软件框架,能自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行任务以及收集计算结果,将数据分布存储、数据通信、容错处理等并行计算涉及到的很多系统底层的复杂细节交由系统负责处理,大大减少了软件开发人员的负担。
3)MapReduce是一个并行程序设计模型与方法(Programming Model & Methodology)。它借助于函数式程序设计语言Lisp的设计思想,提供了一种简便的并行程序设计方法,用Map和Reduce两个函数编程实现基本的并行计算任务,提供了抽象的操作和并行编程接口,以简单方便地完成大规模数据的编程和计算处理 [1] 。
主要功能:
MapReduce提供了以下的主要功能:
1)数据划分和计算任务调度:
系统自动将一个作业(Job)待处理的大数据划分为很多个数据块,每个数据块对应于一个计算任务(Task),并自动 调度计算节点来处理相应的数据块。作业和任务调度功能主要负责分配和调度计算节点(Map节点或Reduce节点),同时负责监控这些节点的执行状态,并 负责Map节点执行的同步控制。
2)数据/代码互定位:
为了减少数据通信,一个基本原则是本地化数据处理,即一个计算节点尽可能处理其本地磁盘上所分布存储的数据,这实现了代码向 数据的迁移;当无法进行这种本地化数据处理时,再寻找其他可用节点并将数据从网络上传送给该节点(数据向代码迁移),但将尽可能从数据所在的本地机架上寻 找可用节点以减少通信延迟。
3)系统优化:
为了减少数据通信开销,中间结果数据进入Reduce节点前会进行一定的合并处理;一个Reduce节点所处理的数据可能会来自多个 Map节点,为了避免Reduce计算阶段发生数据相关性,Map节点输出的中间结果需使用一定的策略进行适当的划分处理,保证相关性数据发送到同一个 Reduce节点;此外,系统还进行一些计算性能优化处理,如对最慢的计算任务采用多备份执行、选最快完成者作为结果。
4)出错检测和恢复:
以低端商用服务器构成的大规模MapReduce计算集群中,节点硬件(主机、磁盘、内存等)出错和软件出错是常态,因此 MapReduce需要能检测并隔离出错节点,并调度分配新的节点接管出错节点的计算任务。同时,系统还将维护数据存储的可靠性,用多备份冗余存储机制提 高数据存储的可靠性,并能及时检测和恢复出错的数据。

二。代码

mapreduce主要由map(映射)和reduce组成

package com.huhu.day01;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* word count
*
* @author huhu_k
*
*/
public class MyWordCount1 { /**
* map:映射
*
* LongWritable key:指针偏移量。 Text value:每个key对应得value即文本内容
*
* 一个文本不管多大 一个mapper 一个快对应一个mapper程序
*
* @author huhu_k
*
*/
public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> { /*
* (non-Javadoc)
*
* @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN,
* org.apache.hadoop.mapreduce.Mapper.Context) LongWritable key:指针偏移量。 Text
* value:每个key对应得value即文本内容 map中context中的存储内容:Text(文本内容), IntWritable(文本所出现的次数)
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 数据切割方式(文本中的内容)
String[] data = value.toString().split(" ");
for (String s : data) {
// k:word v:1
context.write(new Text(s), new IntWritable(1));
}
}
} /**
* reduce 计算
*
* map输出的kv 就是reduce的输入kv 写一个reducer 类 有几个key,写几个reduce方法
*
* @author huhu_k
*
*/
public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
int sum = 0; @Override
protected void reduce(Text key, Iterable<IntWritable> value, Context context)
throws IOException, InterruptedException {
for (IntWritable v : value) {
sum += v.get();
}
context.write(key, new IntWritable(sum));
} } public static void main(String[] args) throws Exception { // 配置容器
Configuration conf = new Configuration();
// 创建一个job
@SuppressWarnings("deprecation")
Job job = new Job(conf, "MyMapReduce Two");
// 配置job
job.setJarByClass(MyWordCount1.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 输入输出
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); //执行程序
boolean waitForCompletion = job.waitForCompletion(true);
System.exit(waitForCompletion ? 0 : 1);
}
}

将代码打成jar包上传至hadoop  。输入命令在hadoop种运行

hadoop jar mapreduce.jar /in/ihaveadream.txt /out/2

运行完后

我这里是使用集群运行,没有安装装插件。将类打成jar包,以及类想关联的jar包,然后上传到hadoop种然后运行。

MapReduce(一)的更多相关文章

  1. Mapreduce的文件和hbase共同输入

    Mapreduce的文件和hbase共同输入 package duogemap;   import java.io.IOException;   import org.apache.hadoop.co ...

  2. mapreduce多文件输出的两方法

    mapreduce多文件输出的两方法   package duogemap;   import java.io.IOException;   import org.apache.hadoop.conf ...

  3. mapreduce中一个map多个输入路径

    package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...

  4. Hadoop 中利用 mapreduce 读写 mysql 数据

    Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP ...

  5. [Hadoop in Action] 第5章 高阶MapReduce

    链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter   1.链接MapReduce作业   [顺序链接MapReduce作业]   mapreduce-1 | mapr ...

  6. MapReduce

    2016-12-21  16:53:49 mapred-default.xml mapreduce.input.fileinputformat.split.minsize 0 The minimum ...

  7. 使用mapreduce计算环比的实例

    最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个 ...

  8. MapReduce剖析笔记之八: Map输出数据的处理类MapOutputBuffer分析

    在上一节我们分析了Child子进程启动,处理Map.Reduce任务的主要过程,但对于一些细节没有分析,这一节主要对MapOutputBuffer这个关键类进行分析. MapOutputBuffer顾 ...

  9. MapReduce剖析笔记之七:Child子进程处理Map和Reduce任务的主要流程

    在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child ...

  10. MapReduce剖析笔记之六:TaskTracker初始化任务并启动JVM过程

    在上面一节我们分析了JobTracker调用JobQueueTaskScheduler进行任务分配,JobQueueTaskScheduler又调用JobInProgress按照一定顺序查找任务的流程 ...

随机推荐

  1. Python中的垃圾回收机制

    Python的垃圾回收机制 引子: 我们定义变量会申请内存空间来存放变量的值,而内存的容量是有限的,当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,而变量名是访问到变量值的唯一方式,所以 ...

  2. 基于SVM的python简单实现验证码识别

    验证码识别是一个适合入门机器学习的项目,之前用knn 做过一个很简单的,这次用svm来实现.svm直接用了开源的库libsvm.验证码选的比较简单,代码也写得略乱,大家看看就好. 1. 爬取验证码图片 ...

  3. 测试驱动android

    测试驱动android开发 在安卓模拟器或者真机上跑测试用例速度很慢.构建.部署.启动app,通常需要花费一分钟或者更久.这不是TDD(测试驱动开发)模式.Robolectric提供一种更好的方式. ...

  4. 将.db文件导入SQLServer2008数据库

    最近要做一个项目,需要连接数据库,给我的数据文件是sqlite,我需要将数据导入到SQLServer数据库 需要借助一个软件:DBDBMigration 页面最上方的选择框内,先选择数据文件类型,这里 ...

  5. 鼠标经过事件(onmouseover)

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  6. Lambda语法篇

    函数式接口 函数式接口(functional interface 也叫功能性接口,其实是同一个东西).简单来说,函数式接口是只包含一个方法的接口. Lambda语法 包含三个部分 一个括号内用逗号分隔 ...

  7. Top 命令解析

    TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中C ...

  8. 雷林鹏分享:XML DOM

    XML DOM DOM(Document Object Model 文档对象模型)定义了访问和操作文档的标准方法. XML DOM XML DOM(XML Document Object Model) ...

  9. eQTL | Expression quantitative trait loci | 数量性状位点 | 表达数量性状基因座

    一篇通俗的文章:eQTL Expression quantitative trait loci (eQTLs) are genomic loci that explain all or a fract ...

  10. MapReduce处理气象数据

    老师:MissDu 提交作业 1. 用Python编写WordCount程序并提交任务 程序 WordCount 输入 一个包含大量单词的文本文件 输出 文件中每个单词及其出现次数(频数),并按照单 ...