[Sdoi2017]序列计数 矩阵优化dp
题目
https://www.lydsy.com/JudgeOnline/problem.php?id=4818
思路
先考虑没有质数限制
dp是在同余系下的,所以\(f[i][j]\)表示前i个点,和为j的方案数
转移就是\(f[i][j]=f[i-1][k]+g[(j-k)\%p]\)
g[i]是x%p==i出现的个数
有质数的话
用tot-无质数
无质数就在g[i]上删去质数出现的个数,再跑一边
但是!!
n很大,应该是带个log的
矩阵优化吧
代码
#include <bits/stdc++.h>
using namespace std;
const int mod = 20170408;
const int N = 1e5 + 7;
int read() {
int x = 0, f = 1;
char s = getchar();
for (; s > '9' || s < '0'; s = getchar())
if (s == '-')
f = -1;
for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int n, m, p;
int pri[2000008], cnt;
bool vis[20000008];
void get_pri(int n) {
vis[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!vis[i])
pri[++cnt] = i;
for (int j = 1; i * pri[j] <= n && j <= cnt; ++j) {
vis[i * pri[j]] = 1;
if (i % pri[j] == 0)
break;
}
}
}
struct node {
int ch[201][201];
} a, b, c;
node mul(node a, node b) {
node c = {};
for (int i = 0; i < p; ++i)
for (int k = 0; k < p; ++k)
for (int j = 0; j < p; ++j) c.ch[i][j] = (c.ch[i][j] + 1LL * a.ch[i][k] * b.ch[k][j] % mod) % mod;
return c;
}
node q_pow(node a, int nb) {
node ans = {};
for (int i = 0; i < p; ++i) ans.ch[i][i] = 1;
while (nb) {
if (nb & 1)
ans = mul(ans, a);
a = mul(a, a);
nb >>= 1;
}
return ans;
}
int g[200];
int main() {
// freopen("count.in","r",stdin);
// freopen("count.out","w",stdout);
n = read(), m = read(), p = read();
get_pri(m);
// one
for (int i = 1; i <= m; ++i) g[i % p]++;
for (int i = 0; i < p; ++i)
for (int j = 0; j < p; ++j) a.ch[i][j] = g[(i - j + p) % p];
for (int i = 0; i < p; ++i) b.ch[i][0] = g[i];
c = mul(q_pow(a, n - 1), b);
int ans = c.ch[0][0];
memset(g, 0, sizeof(g));
memset(a.ch, 0, sizeof(a.ch));
memset(b.ch, 0, sizeof(b.ch));
memset(c.ch, 0, sizeof(c.ch));
// two
for (int i = 1; i <= m; ++i)
if (vis[i])
g[i % p]++;
for (int i = 0; i < p; ++i)
for (int j = 0; j < p; ++j) a.ch[i][j] = g[(i - j + p) % p];
for (int i = 0; i < p; ++i) b.ch[i][0] = g[i];
c = mul(q_pow(a, n - 1), b);
ans -= c.ch[0][0];
ans = (ans % mod + mod) % mod;
printf("%d",ans);
return 0;
}
/*
3 5 3
*/
[Sdoi2017]序列计数 矩阵优化dp的更多相关文章
- [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)
题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...
- Luogu3702 SDOI2017 序列计数 矩阵DP
传送门 不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的. 而且转移矩阵是循环矩阵,所以可以只用第一 ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- 【BZOJ4818】【SDOI2017】序列计数 [矩阵乘法][DP]
序列计数 Time Limit: 30 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序 ...
- bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】
被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...
- 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法
原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...
- BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法
发现转移矩阵是一个循环矩阵. 然后循环矩阵乘以循环矩阵还是循环矩阵. 据说还有FFT并且更优的做法. 之后再看吧 #include <map> #include <cmath> ...
- luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥
现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...
- BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*
BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...
随机推荐
- 参考termux中包管理命令的伪装修改的arch版包管理命令
#!/bin/bash set -e -u show_help() { echo "This help message is useless, please read the content ...
- 14. Longest Common Prefix(暴力循环)
Write a function to find the longest common prefix string amongst an array of strings. If there is n ...
- QTCreator 调试:unknown debugger type "No engine"
[1]QTCreator调试,应用程序输出:unknown debugger type "No engine" 如图:下断点->调试程序->应用程序输出 说明:调试器无 ...
- QDialog 使用Demo
[1].pro QT += core gui greaterThan(QT_MAJOR_VERSION, ): QT += widgets TARGET = TestDialog TEMPLATE = ...
- linux环境下tab键自动缩进4个空格
1. 进入 root 模式 su root 2. 编辑 /etc/vimrc 文件 root@localhost /home/xiluhua/tscripts $ vi /etc/vimrc 3. 文 ...
- 在hue中使用hive
一.创建新表 建表语句如下: CREATE TABLE IF NOT EXISTS user_collection_9( user_id string , seller_id string , pro ...
- loadRunner手动关联, web_reg_save_param_regexp()函数正则匹配字符,赋值给变量
loadRunner写脚本实现登录机票网站,手动关联,获取页面源码中特定字符 手动关联,就是通过函数获取某个步骤生成的字符,赋值给一个变量,这个变量可以作为接下来某个步骤的输入, 以便这个脚本能够在存 ...
- HDU 1207 汉诺塔II (递推)
经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...
- mac shell终端编辑命令行快捷键——行首,行尾
Ctrl + d 删除一个字符,相当于通常的Delete键(命令行若无所有字符,则相当于exit:处理多行标准输入时也表示eof) Ctrl + h 退格删除一个字符,相当 ...
- 前端框架VUE----cli脚手架(框架)
一.创建vue项目 npm install vue-cli -g #-g全局 (sudo)npm install vue-cli -g #mac笔记本 vue-init webpack myvue # ...