SVM学习笔记1-问题定义
问题定义: 给出一些样本,包含两类。svm试图找到一个超平面,将数据分开,并且每种样本到超平面的距离的最小值最大。
输入样本:$\{x_{i},y_{i}| 1\leq i\leq n \}$,$y_{i}\in \{-1,1\}$
超平面定义:$w^{T}x+b=0$
设某一个采样点$x^{(i)}$到超平面的距离为$\gamma^{(i)}$,那么从$x^{(i)}$作方向为w的射线,其与超平面的交点为B,采样点到B的距离为$\gamma^{(i)}$,那么B可以用这样的向量表示$B=x^{(i)}-\gamma^{(i)}\frac{w}{||w||}$。
由于B在超平面上,所以有:$w^{T}(x^{(i)}-\gamma^{(i)}\frac{w}{||w||})+b=0$
我们从中解得$\gamma^{(i)}=(\frac{w}{||w||})^{T}x^{(i)}+\frac{b}{||w||}$。当$y^{(i)}=1$时此值为正数,否则为负数,所以我们将其乘以$y^{(i)}$,那么此时$\gamma^{(i)}=y^{(i)}((\frac{w}{||w||})^{T}x^{(i)}+\frac{b}{||w||})$
现在令$||w||=1$,按照我们问题定义中的描述,我们要解决的问题是这样的:$max_{w,b,\gamma }$ $\gamma$,使得(1)$y^{(i)}(w^{T}x^{(i)}+b)\geq \gamma ,1 \leq i \leq n$,(2)$||w||=1$
由于$||w||=1$的限制不利于求解,所以我们将求解换成如下的描述$max_{w,b,\gamma }$ $\frac {\gamma}{||w||}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq \gamma ,1 \leq i \leq n$。此时$w$的大小可以任意取。
进一步我们令$\gamma=1$,那么现在变为$max_{w,b}$ $\frac {1}{||w||}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$
最后,将求解问题变成$min_{w,b}$ $\frac{1}{2}||w||^{2}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$。
SVM学习笔记1-问题定义的更多相关文章
- SVM学习笔记(一)
支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- SVM学习笔记
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...
- SVM学习笔记5-SMO
首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...
- SVM学习笔记4-核函数和离群点的处理
核函数在svm里,核函数是这样定义的.核函数是一个n*n(样本个数)的矩阵,其中:$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$ ...
- SVM学习笔记(二)----手写数字识别
引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...
- Struts2学习笔记 - Action篇<定义逻辑Action>
有三种方法可以使一个Action处理多个请求 动态方法调用DMI 定义逻辑Acton 在配置文件中使用通配符 这文章就谈论一下定义逻辑Action 这里主要关注的是struts.xml配置文件,一般情 ...
- SVM学习笔记(一):libsvm参数说明(转)
LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...
- scala 学习笔记(01) 函数定义、分支、循环、异常处理、递归
package yjmyzz import scala.io.StdIn object ScalaApp { def main(args: Array[String]) { println(" ...
随机推荐
- bootstrap ui
附加访问地址:http://www.bootcss.com/p/jquery-ui-bootstrap/
- css抖动动画
button{ animation: beat 6s ease 0s infinite normal; } @keyframes beat { 0% { transform: translateY(0 ...
- MyBatis基础入门《十四》ResultMap子元素(association )
MyBatis基础入门<十四>ResultMap子元素(association ) 1. id: >> 一般对应数据库中改行的主键ID,设置此项可以提高Mybatis的性能 2 ...
- Ubuntu 16.04卸载一些不必要的预装软件
卸载libreoffices ~$ sudo apt-get remove libreoffice-common 卸载Amazon的链接 ~$ sudo apt-get remove unity-we ...
- gispro试用版账户注册
1.注册账户 http://www.esri.com/zh-cn/arcgis/products/arcgis-pro/trial 2.分配账户权限 3.gispro可以登录了
- Unity shader学习之逐顶点漫反射光照模型
公式如下: Cdiffuse = Clight * mdiffuse * max(0, dot(n,l)); 其中,n 为表面法线,l 为指向光源的单位向量,mdiffuse 为材质温反射颜色,Cdi ...
- PE结构图示
- Object-C-Foundation-反射
主要方法和类型 Class 变量名 = [类或者对象 class]; Class 变量名 = [类或者对象 superclass]; Class 变量名 = NSClassFromString(方 ...
- Glorious Brilliance (最短路 + 带权二分图匹配)
这是一道代码大题.一开始读错题意了,然后理解成直接看上去的那种相邻,然后想不通好久!!! 把不同联通的图分离出来,然后先预处理一下形成之后的相邻图的状态,然后根据01确定哪一些是需要更换状态的,然后建 ...
- STL容器之set
[1]set容器 一个集合(set)是一个容器,它其中所包含的元素的值是唯一的. [2]set容器方法 (1)set构造函数.插入函数.遍历过程 应用示例代码如下: #include <set& ...