题意:中文题面

思路:不知道直接暴力枚举所有情况行不行。。。

我们可以把答案转化为

所以答案就是求xi2的最小值,那么我们可以直接用区间DP来写。设dp[x1][y1][x2][y2][k]为x1 y1 到 x2 y2 区间分割为k份的最下平方和,显然k = 1是就是区间和的平方。

写了6层for,写出来自己都不信。。。

交C++才过。。。

代码:

#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
const int MOD = ;
int n;
double w[maxn][maxn], dp[maxn][maxn][maxn][maxn][maxn], sum[maxn][maxn];
double get(int x1, int y1, int x2, int y2){
return sum[x2][y2] - sum[x2][y1 - ] - sum[x1 - ][y2] + sum[x1 - ][y1 - ];
}
int main(){
scanf("%d", &n);
memset(sum, , sizeof(sum));
for(int i = ; i <= ; i++){
for(int j = ; j <= ; j++){
scanf("%lf", &w[i][j]);
sum[i][j] = sum[i - ][j] + sum[i][j - ] - sum[i - ][j - ] + w[i][j];
}
}
double per = sum[][] / n;
for(int x1 = ; x1 <= ; x1++){
for(int y1 = ; y1 <= ; y1++){
for(int x2 = x1; x2 <= ; x2++){
for(int y2 = y1; y2 <= ; y2++){
double ret = get(x1, y1, x2, y2);
dp[x1][y1][x2][y2][] = ret * ret;
}
}
}
}
for(int k = ; k <= n; k++){
for(int x1 = ; x1 <= ; x1++){
for(int y1 = ; y1 <= ; y1++){
for(int x2 = x1; x2 <= ; x2++){
for(int y2 = y1; y2 <= ; y2++){
dp[x1][y1][x2][y2][k] = INF;
for(int t = x1; t < x2; t++){
dp[x1][y1][x2][y2][k] = min(dp[x1][y1][x2][y2][k], dp[x1][y1][t][y2][] + dp[t + ][y1][x2][y2][k - ]);
dp[x1][y1][x2][y2][k] = min(dp[x1][y1][x2][y2][k], dp[x1][y1][t][y2][k - ] + dp[t + ][y1][x2][y2][]);
}
for(int t = y1; t < y2; t++){
dp[x1][y1][x2][y2][k] = min(dp[x1][y1][x2][y2][k], dp[x1][y1][x2][t][] + dp[x1][t + ][x2][y2][k - ]);
dp[x1][y1][x2][y2][k] = min(dp[x1][y1][x2][y2][k], dp[x1][y1][x2][t][k - ] + dp[x1][t + ][x2][y2][]);
}
}
}
}
}
}
printf("%.3lf\n", sqrt(dp[][][][][n] / n - per * per));
return ;
}

POJ 1191 棋盘分割(区间DP)题解的更多相关文章

  1. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  2. (中等) POJ 1191 棋盘分割,DP。

    Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  3. POJ 1191 棋盘分割(DP)

    题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均 ...

  4. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  5. poj1191棋盘分割——区间DP

    题目:http://poj.org/problem?id=1191 分析题意,可知每次要沿棋盘中的一条线把一块一分为二,取其中一块继续分割: σ最小经分析可知即为每块的xi和的平方最小: 故用区间DP ...

  6. poj - 1191 - 棋盘切割(dp)

    题意:将一个8*8的棋盘(每一个单元正方形有个分值)沿直线(竖或横)割掉一块,留下一块,对留下的这块继续这样操作,总共进行n - 1次,得到n块(1 < n < 15)矩形,每一个矩形的分 ...

  7. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

  8. POJ 1191棋盘分割问题

    棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...

  9. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

随机推荐

  1. Oracle数据库备份实验笔记[不完整,内容乱]

    rman target / log=/orasoft/backup/${DATE}backup1.log <<EOFrun {allocate channel c1 device type ...

  2. Beta冲刺阶段3.0

    1. 提供当天站立式会议照片一张 2. 每个人的工作 (有work item 的ID) 成员 昨天已完成的工作 今天计划完成的工作 工作中遇到的困难 具体贡献 郑晓丽 完成"我的活动&quo ...

  3. Mvcpager以下各节已定义,但尚未为布局页“~/Views/Shared/_Layout.cshtml”呈现:“Scripts”。

    解决办法如下: 1.在_Layout.cshtml布局body内,添加section,Scripts.Render和RenderSection标签示例代码如下: <body class=&quo ...

  4. POJ1944 Fiber Communications (USACO 2002 February)

    Fiber Communications 总时间限制:  1000ms 内存限制:  65536kB 描述 Farmer John wants to connect his N (1 <= N ...

  5. Centos 6.5初始化配置

    安装好centos 6.5 # -*- coding:utf-8 -*- import win32api import time import os from Tkinter import * are ...

  6. latex 公式 和排版

    http://bbs.chinatex.org/forum.php?mod=viewthread&tid=7423 http://blog.sina.com.cn/s/blog_5e16f17 ...

  7. Nginx技术研究系列6-配置详解

    前两篇文章介绍了Nginx反向代理和动态路由: Ngnix技术研究系列1-通过应用场景看Nginx的反向代理 Ngnix技术研究系列2-基于Redis实现动态路由 随着研究的深入,很重要的一点就是了解 ...

  8. codeforces 984B Minesweeper

    题意: 给出一个矩阵,如果一个格子是数字,那么与这个格子相邻的格子中有炸弹的数量必须等于这个格子中的数字: 如果一个格子是空地,那么这个格子的所有相邻的格子中就不能有炸弹. 判断这个矩阵是否合法. 思 ...

  9. 前端 dojo

    http://dojotoolkit.org/documentation/tutorials/1.10/hello_dojo/ html在线编辑器 国内 http://runjs.cn 国外 http ...

  10. 2.scrapy安装

    A.Anaconda如果已安装,那么可以通过 conda 命令安装 Scrapy,安装命令如下: conda install Scrapy   ============================ ...