feature map 大小以及反卷积的理解
(1)边长的计算公式是:
output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1
输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:
(200-5+2*1)/2+1 为99.5,取99
(99-3)/1+1 为97
(97-3+2*1)/1+1 为97
研究过网络的话看到stride为1的时候,当kernel为 3 padding为1或者kernel为5 padding为2 一看就是卷积前后尺寸不变(卷积向下取整,池化向上取整)。
(2)如果是反卷积(deconvolution)
输入:2x2, 卷积核:4x4, 滑动步长:3, 输出:7x7
公式:2x4-(4-3)x(2-1)=8-1=7
output_w= input_w * kernerl_size - (kernel_size - stride)*(input_w - 1)
或者: (2 - 1) * 3 + 4 = 7
output = (input_w - 1) * stride + kernel_size
参考自 https://blog.csdn.net/qq_28424679/article/details/78665273
卷积运算和矩阵乘法的关系
考虑如下一个简单的卷积计算:
我们再把4x4的输入特征展成[16,1]的矩阵X ,那么Y = CX则是一个[4,1]的输出特征矩阵,把它重新排列2×2的输出特征就得到最终的结果,从上述分析可以看出卷积层的计算其实是可以转化成矩阵相乘的。值得注意的是,在一些深度学习网络的开源框架中并不是通过这种这个转换方法来计算卷积的,因为这个转换会存在很多无用的0乘操作。
通过上述的分析,我们已经知道卷积层的前向操作可以表示为和矩阵C相乘,那么 我们很容易得到卷积层的反向传播就是和C的转置相乘。
反卷积和卷积的关系
反卷积又被称为 转置卷积(transposed convolution),其实卷积层的前向传播过程就是反卷积层的反向传播过程,卷积层的反向传播过程就是反卷积层的前向传播过程。因为卷积层的前向反向计算分别为乘 C和C的转置,而卷积层的前向反向计算分别为成C的转置和 C转置的转置。所以它们的前向传播和反向传播刚好相反。
Fractionally Strided Convolution
反卷积也被称为 小数步长的卷积。对于步长s大于1的卷积,其对应的反卷积步长s小于1.对于反卷积的小数步长可以理解为:在其输入特征单元之间插入s-1个0,插入0后的看作新的特征输入,然后此时的步长不再是小数,而是1。因此反卷积的输入输出关系为:
o = s(i-1)+k - 2*p
feature map 大小以及反卷积的理解的更多相关文章
- CNN中下一层Feature map大小计算
符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是 ...
- TensorFlow与caffe中卷积层feature map大小计算
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 在CNN网络中roi从原图映射到feature map中的计算方法
在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600 ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- capsule network——CNN仅仅考虑了“有没有”的问题,没有考虑feature map的结构关系。这个结构关系包括位置,角度等。Capsule layer的输出也跟feature map的max-pooling输出不同,capsule layer的输出是一个向量,这个向量包含了位置,大小,角度等信息,这是feature map仅能输出一个值所不具备的;训练比较慢
capsule network--<Dynamic Routing Between Capsules> from:https://zhuanlan.zhihu.com/p/31491520 ...
- pytorch中,不同的kernel对不同的feature map进行卷积之后输出某一个channel对应的多个feature map如何得到一个channel的feature map
实际上在卷积操作的时候,比如说,我某一层输出的feature map的size为4713*13 channel的数目为7,设经过某卷积层之后,网络输出的feature map的channel的数目为1 ...
- 卷积层feature map输出到文本
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52166388 以VGG_16的网络为例 ...
随机推荐
- 【题解】Luogu P1533 可怜的狗狗
原题传送门 莫队介绍,Splay介绍 离线的题目,莫队是不错的解决方法 先把询问排一下序 剩下就套一个莫队的板子 每来一只狗就把漂亮值插入平衡树 每去掉一只狗就把漂亮值从平衡树中删掉 每次查询查平衡树 ...
- 【4opencv】识别复杂的答题卡1(主要算法)
一.问题提出 由于GPY进行了纠偏,所以在采集的时候,就已经获得了质量较高的答题卡图片 下一步就是需要从这张图片中,识别出人眼识别出来的那些信息,并且将这个过程尽可能地鲁棒化,提高识别的准确率. 二. ...
- bzoj 1419 Red is good - 动态规划 - 概率与期望
Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一 ...
- Jmeter在Linux下执行
1.上传jmeter文件到服务器上(最好自己建一个文件夹:如:mkidr yzb_jmeter) 2.上传jmeter脚本到yzb_jmeter,并修改权限:chmod +x 脚本文件 3.修改统计的 ...
- 【Python022--递归】
一.递归 1.写一个求阶乘的函数 --正整数阶乘指从1乘以2乘以3乘以4一直乘到所要求的数 --普通的代码编写方式: def factorial(n): result = n for i ...
- orm查询存在价格为空问题
明明写的没错还是查不到 打印一下sql语句: 解决办法: 把数字变成字符串格式 所以涉及金融计算,涉及小数啊,要求特别精确的,我们用字符串存储.
- XXXcannot be resolved to a type
编写自动化测试用例一个新创建的用例中类继承了其他类,由于未知原因,eclipse没能自动编译源代码到build/classes(或其他classes目录)代码一直报错XXX cannot be res ...
- js动画(速度)
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta ht ...
- algorithm.sty not found error in LaTeX 解决方法
参考: algorithm.sty not found error in LaTeX algorithm.sty not found error in LaTeX 解决方法 错误日志: LaTeX E ...
- FPGA软件使用基础之ISE下载配置 XILINX 下载器使用
重新编辑 转载于https://www.cnblogs.com/lpp2jwz/p/7306020.html 下载程序 下载BIT 格式程序到FPGA 先插好下载器 在 ISE 中编译完 BIT 文件 ...