Transformation

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4578

Problem Description

Yuanfang is puzzled with the question below:

There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.

Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.

Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.

Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.

Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.

Yuanfang has no idea of how to do it. So he wants to ask you to help him.

Input

There are no more than 10 test cases.

For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.

Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)

The input ends with 0 0.

Output

For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.

Sample Input

    5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

    307
7489

题意

给你一个序列,支持四种操作

1.区间加法

2.区间乘法

3.区间减法

4.求和,平方和,立方和 即\(\large \sum_{i=l}^{r}{a_i^p}(1\le p\le 3)\)

题解

一开始看到这道题,觉得可以用数学公式搞搞,搞了半天确实搞出了个公式,用sum1,sum2,sum3分别存和,平方和,立方和,然后合并的时候再搞

搞。但是感觉很麻烦,于是先上网查了查正解是不是有什么巧妙的方法。但是看完网上题解,我才发现都是用的玄学复杂度。

于是我就愉快地也跟着各位大佬一样玄学操作啦。

具体操作:还是用线段树,遇到一段连续相同的区间就可以马上得到答案,其余部分直接暴力就行,我寻思着只要先把每个数都变得不一样然后求所有数的立方和,直接就暴了(别想那么多,这题纯属娱乐)。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 100050
#define mo 10007
ll n,m;
struct Node{ll l,r,lazy;};
struct segmentTree
{
Node tr[N<<2];
void push_up(ll x);
void push_down(ll x);
void bt(ll x,ll l,ll r);
void add(ll x,ll l,ll r,ll tt);
void multiply(ll x,ll l,ll r,ll tt);
void cover(ll x,ll l,ll r,ll tt);
ll query(ll x,ll l,ll r,ll tt);
}seg;
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void segmentTree::push_up(ll x)
{
if(tr[x].l==tr[x].r)return;
Node &a=tr[x<<1],&b=tr[x<<1|1];
if (a.lazy==b.lazy&&tr[x].lazy==-1)tr[x].lazy=a.lazy;
}
void segmentTree::push_down(ll x)
{
if (tr[x].lazy==-1)return;
tr[x<<1].lazy=tr[x].lazy;
tr[x<<1|1].lazy=tr[x].lazy;
tr[x].lazy=-1;
}
void segmentTree::bt(ll x,ll l,ll r)
{
tr[x]=Node{l,r,0};
if (l==r)return;
ll mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::add(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy+=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)add(x<<1,l,r,tt);
if (mid<r)add(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::multiply(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy*=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)multiply(x<<1,l,r,tt);
if (mid<r)multiply(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::cover(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy=tt%mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)cover(x<<1,l,r,tt);
if (mid<r)cover(x<<1|1,l,r,tt);
push_up(x);
}
ll segmentTree::query(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
ll ans=1;
for(ll i=1;i<=tt;i++)ans*=tr[x].lazy;
ans*=(tr[x].r-tr[x].l+1);
return ans%mo;
}
ll mid=(tr[x].l+tr[x].r)>>1,ans=0;
push_down(x);
if(l<=mid)ans+=query(x<<1,l,r,tt);
if(mid<r)ans+=query(x<<1|1,l,r,tt);
push_up(x);
return ans%mo;
}
void work()
{
read(n); read(m);
if (n+m==0)exit(0);
seg.bt(1,1,n);
for(ll i=1;i<=m;i++)
{
ll id,x,y,tt;
read(id); read(x); read(y); read(tt);
if (id==1)seg.add(1,x,y,tt);
if (id==2)seg.multiply(1,x,y,tt);
if (id==3)seg.cover(1,x,y,tt);
if (id==4)printf("%lld\n",seg.query(1,x,y,tt));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
while(1)work();
}

HDU 4578 线段树玄学算法?的更多相关文章

  1. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  2. HDU - 4578 线段树+三重操作

    这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...

  3. hdu 4578 线段树 ****

    链接:点我  1

  4. K - Transformation HDU - 4578 线段树经典题(好题)

    题意:区间  加   变成定值 乘  区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题  设3个Lazy 标记分别为  change 改变mul乘 add加  优先度change>m ...

  5. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  6. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

随机推荐

  1. Win内核原理与实现学习笔记2-现代操作系统的基本结构

    1.操作系统本属于软件的范畴,但它需要紧密的跟硬件打交道,它为上层应用软件或应用系统提供了一层抽象,专门负责硬件资源的管理和分配.(应用程序不需要跟硬件打交道,它们利用操作系统提供的功能来实现各种任务 ...

  2. hdu6736(寻找最小环)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6736 题意: 在给定图中寻找所有最小环 保证不存在一条边经过两个简单环 数据范围: $1\leq n ...

  3. NOI2019 游记——一切都是最好的安排

    有幸运有遗憾 一切都是最好的安排. Day-3 临近NOI了,机房都在狂奶某某同学进队稳了 HE省队垫底,THUSC面试都没进 作为一个有自知之明的人 也就指望着能拼进前100,至少也拿个银牌. 心态 ...

  4. radio自带回显和默认选中

    <input type="radio" name="state" <c:if test="${empty model.state || m ...

  5. DBCA创建数据库

    工具/原料 oracle database 11g 步骤/方法 1 确保安装好oracle database 11g 2 打开命令提示符(运行中输入CMD打开 或是在 附件中点击打开) 3 输入dbc ...

  6. Add hyperlink to textblock wpf

    Add hyperlink to textblock wpf Displaying is rather simple, the navigation is another question. XAML ...

  7. Vue篇之vue 使用Jade模板写html

    // 安装jade包 npm install jade jade-loader --save-dev // 如果使用vue-cli构建项目,则不需要安装stylus相关的包,vue-cli默认已安装 ...

  8. SQL-W3School-高级:SQL CREATE TABLE 语句

    ylbtech-SQL-W3School-高级:SQL CREATE TABLE 语句 1.返回顶部 1. CREATE TABLE 语句 CREATE TABLE 语句用于创建数据库中的表. SQL ...

  9. 为什么使用 Web Services?

    最重要的事情是协同工作 由于所有主要的平台均可通过 Web 浏览器来访问 Web,不同的平台可以借此进行交互.为了让这些平台协同工作,Web 应用程序被开发了出来. Web 应用程序是运行在 Web ...

  10. PCA人脸识别学习笔记---原理篇

     前言 在PCA人脸识别中我们把一个人脸图片看做一个特征向量,PCA做的事情就是:找到这样一组基向量来表示已有的数据点,不仅仅是将高维度数据变成低维度数据,更能够找到最关键信息. 假设已有数据{xi} ...