HDU 4578 线段树玄学算法?
Transformation
题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=4578
Problem Description
Yuanfang is puzzled with the question below:
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
Sample Output
307
7489
题意
给你一个序列,支持四种操作
1.区间加法
2.区间乘法
3.区间减法
4.求和,平方和,立方和 即\(\large \sum_{i=l}^{r}{a_i^p}(1\le p\le 3)\)
题解
一开始看到这道题,觉得可以用数学公式搞搞,搞了半天确实搞出了个公式,用sum1,sum2,sum3分别存和,平方和,立方和,然后合并的时候再搞
搞。但是感觉很麻烦,于是先上网查了查正解是不是有什么巧妙的方法。但是看完网上题解,我才发现都是用的玄学复杂度。
于是我就愉快地也跟着各位大佬一样玄学操作啦。
具体操作:还是用线段树,遇到一段连续相同的区间就可以马上得到答案,其余部分直接暴力就行,我寻思着只要先把每个数都变得不一样然后求所有数的立方和,直接就暴了(别想那么多,这题纯属娱乐)。
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 100050
#define mo 10007
ll n,m;
struct Node{ll l,r,lazy;};
struct segmentTree
{
Node tr[N<<2];
void push_up(ll x);
void push_down(ll x);
void bt(ll x,ll l,ll r);
void add(ll x,ll l,ll r,ll tt);
void multiply(ll x,ll l,ll r,ll tt);
void cover(ll x,ll l,ll r,ll tt);
ll query(ll x,ll l,ll r,ll tt);
}seg;
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void segmentTree::push_up(ll x)
{
if(tr[x].l==tr[x].r)return;
Node &a=tr[x<<1],&b=tr[x<<1|1];
if (a.lazy==b.lazy&&tr[x].lazy==-1)tr[x].lazy=a.lazy;
}
void segmentTree::push_down(ll x)
{
if (tr[x].lazy==-1)return;
tr[x<<1].lazy=tr[x].lazy;
tr[x<<1|1].lazy=tr[x].lazy;
tr[x].lazy=-1;
}
void segmentTree::bt(ll x,ll l,ll r)
{
tr[x]=Node{l,r,0};
if (l==r)return;
ll mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::add(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy+=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)add(x<<1,l,r,tt);
if (mid<r)add(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::multiply(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy*=tt;
tr[x].lazy%=mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)multiply(x<<1,l,r,tt);
if (mid<r)multiply(x<<1|1,l,r,tt);
push_up(x);
}
void segmentTree::cover(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
tr[x].lazy=tt%mo;
return;
}
ll mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)cover(x<<1,l,r,tt);
if (mid<r)cover(x<<1|1,l,r,tt);
push_up(x);
}
ll segmentTree::query(ll x,ll l,ll r,ll tt)
{
if (l<=tr[x].l&&tr[x].r<=r&&tr[x].lazy!=-1)
{
ll ans=1;
for(ll i=1;i<=tt;i++)ans*=tr[x].lazy;
ans*=(tr[x].r-tr[x].l+1);
return ans%mo;
}
ll mid=(tr[x].l+tr[x].r)>>1,ans=0;
push_down(x);
if(l<=mid)ans+=query(x<<1,l,r,tt);
if(mid<r)ans+=query(x<<1|1,l,r,tt);
push_up(x);
return ans%mo;
}
void work()
{
read(n); read(m);
if (n+m==0)exit(0);
seg.bt(1,1,n);
for(ll i=1;i<=m;i++)
{
ll id,x,y,tt;
read(id); read(x); read(y); read(tt);
if (id==1)seg.add(1,x,y,tt);
if (id==2)seg.multiply(1,x,y,tt);
if (id==3)seg.cover(1,x,y,tt);
if (id==4)printf("%lld\n",seg.query(1,x,y,tt));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
while(1)work();
}
HDU 4578 线段树玄学算法?的更多相关文章
- hdu 4578 线段树(标记处理)
Transformation Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others) ...
- HDU - 4578 线段树+三重操作
这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...
- hdu 4578 线段树 ****
链接:点我 1
- K - Transformation HDU - 4578 线段树经典题(好题)
题意:区间 加 变成定值 乘 区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题 设3个Lazy 标记分别为 change 改变mul乘 add加 优先度change>m ...
- HDU 4578 线段树复杂题
题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...
- hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- hdu 3974 线段树 将树弄到区间上
Assign the task Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3436 线段树 一顿操作
Queue-jumpers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- hdu 3397 线段树双标记
Sequence operation Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
随机推荐
- c实现循环链表
解决约瑟夫环问题核心步骤: 1.建立具有n个节点.无头的循环链表 2.确定第一个报数人的位置 3.不断从链表中删除链节点,直到链表为空 #include <iostream> #inclu ...
- windows问题集合
1.windows创建内核对象时系统会创建内核数据块,我们通过什么方式去创建,打开,操作这些数据块呢?微软是如何做的?如果是你又会如何做?(提示:内核句柄) 2.进程 发展历史(系统方面发展) 答: ...
- 使用Android手机作为树莓派的屏幕
在使用树莓派时,有时出于应急,身边没有屏幕,或者外出携带时也不方便带着屏幕走.如果能使用随身携带的智能手机当做其屏幕,则会方便许多.看看效果,一个树莓派+充电宝+手机,就会非常有用了. 满足以下条件即 ...
- Python颜色分类及格式
Python字符串颜色使用下面方式进行修改 \033[显示方式;字体色;背景色m 字符串 \033[0m 显示方式包括: 0 终端默认设置 1 高亮显示 4 使用下划线 5 闪烁 7 反白显 ...
- concurrency parallel 并发 并行 parallelism
在传统的多道程序环境下,要使作业运行,必须为它创建一个或几个进程,并为之分配必要的资源.当进程运行结束时,立即撤销该进程,以便能及时回收该进程所占用的各类资源.进程控制的主要功能是为作业创建进程,撤销 ...
- go协程理解
一.Golang 线程和协程的区别 备注:需要区分进程.线程(内核级线程).协程(用户级线程)三个概念. 进程.线程 和 协程 之间概念的区别 对于 进程.线程,都是有内核进行调度,有 CPU 时间片 ...
- python 学生表
1,主页面函数(01-mainpage.py) import json import file_manager import student_system ''' ''' # 全局变量 file_na ...
- PHP判断访问者是PC端还是移动端
function isMobile() { // 如果有HTTP_X_WAP_PROFILE则一定是移动设备 if (isset ($_SERVER['HTTP_X_WAP_PROFILE'])) { ...
- 安装SQL server 提示重新启动计算机失败
SQL Server2008是一款功能强大.实用性强的mysql数据库管理系统,因此很多用户都会在Win7系统中安装SQL Server2008,但是不少用户在安装过程中遇到问题,安装SQL Serv ...
- 005-log-slf4j
一.概述 SLF4J = Simple Logging Facade for Java. author: Ceki Gülcü SLF4J,即简单日志门面(Simple Logging ...