【分类算法】感知机(Perceptron)
0 - 算法描述
感知机算法是一类二分类算法,其问题描述为,给定一个训练数据集
$$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$
其中$x_i\in \mathbb{R}^n,y_i\in\{-1,1\},i=1,2,\cdots,N$,求参数$w,b$,使得以下损失函数极小化问题的解
$$\min_{w,b}L(w,b)=\min -\sum_{x_i\in M}y_i(w\cdot x_i+b),$$
其中$M$为误分类点的集合。
下一节给出损失函数的推导过程。
1 - 推导过程
感知机算法求解的数据集必须具有线性可分性,其定义为,对于数据集
$$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$
其中$x_i\in \mathbb{R}^n,y_i\in\{-1,1\},i=1,2,\cdots,N$,如果存在某个超平面$S$
$$w\cdot x + b = 0,$$
能够将数据集的正类和负类完全正确地划分到超平面的两侧,即对所有$y_i=+1$的样本$i$,有$w\cdot x_i+b>0$,对所有$y_i=-1$的样本$i$,有$w\cdot x_i + b < 0$,则称数据集$T$为线性可分数据集(linearly separable dataset)。
感知机算法即是求解线性可分数据集中的超平面$S$的算法。由于超平面是由$w$和$b$确定的,因此学习超平面的目标即是确定参数$w$和$b$,按照梯度下降法优化要求,需要定义一个关于参数$w$和$b$的损失函数进行优化。
注意到,损失函数被期望是连续可导的,因此不能直接选取误分类点个数作为损失函数,在感知机中,选取误分类点到超平面$S$的总距离作为损失函数。对于输入空间$\mathbb{R}^n$中任意一点$x_i$到超平面$S$的距离为
$$\frac{1}{\left \| w\right \|_2}\left | w \cdot x_i + b \right |,$$
其次,对于误分类点来说,满足
$$-y_i(w_i\cdot x_i+b)>0,$$
因此可以把距离公式的绝对值替换得到
$$-\frac{1}{\left \| w\right \|_2}y_i\left ( w \cdot x_i + b \right ),$$
假设超平面$S$的误分类集合为$M$,那么所有误分类点到超平面$S$的总距离为
$$-\frac{1}{\left \| w\right \|_2}\sum_{x_i\in M}y_i\left ( w \cdot x_i + b \right ),$$
不考虑$\frac{1}{\left \| w\right \|_2}$,则感知机$sign(w\cdot x+b)$的损失函数定义为
$$L(w,b)=-\sum_{x_i\in M}y_i(w\cdot x_i+b).$$
2 - 参考资料
《统计学习方法》,李航
【分类算法】感知机(Perceptron)的更多相关文章
- matlab 实现感知机线性二分类算法(Perceptron)
感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = ...
- 感知机(perceptron)概念与实现
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...
- 2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- [分类算法] :SVM支持向量机
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. S ...
- K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...
- 算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比 ...
- 分类算法之贝叶斯(Bayes)分类器
摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习. 一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器 ...
随机推荐
- 【深度学习】基于Pytorch的ResNet实现
目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文:https://arxiv.org/pd ...
- C#开发Office程序
标题:Office 解决方案开发概述 (VSTO) 地址:https://docs.microsoft.com/zh-cn/visualstudio/vsto/office-solutions-dev ...
- springboot整合freemarker模板引擎后在页面获取basePath绝对路径
在项目中引用静态资源文件或者进行ajax请求时我们有时候会使用 ${basePath} ,其实这就是一种获取绝对路径的方式: 那么在springboot项目中要怎么配置才能使用 basePaht呢? ...
- 阿里云上遇到: virtual memory exhausted: Cannot allocate memory
# dd if=/dev/zero of=/swap bs=1024 count=1M Format the swap file: # mkswap /swap Enable the swap fil ...
- STM32 HAL库 UART 串口读写功能笔记
https://www.cnblogs.com/Mysterious/p/4804188.html STM32L0 HAL库 UART 串口读写功能 串口发送功能: uint8_t TxData[10 ...
- 你应该知道的16个linux命令
Linux常用命令很多比如cd.ls.pwd.du.df.tail.head.yum.mv.touch.mkdir.cp.tar等,根据工作内容不同,经常使用的命令也不同,比如运维人员使用tail.h ...
- fiddler修改请求和返回
一.修改请求 1.先设置请求前断点 2.设置拦截,在左下角的QuickExec命令行中输入bpu www.baidu.com/XXXX 3.选中需要修改的请求,选中Inspectors面板,使用Raw ...
- HDU4254 A Famous Game
luogu嘟嘟嘟 这题刚开始特别容易理解错:直接枚举所有\(n + 1\)种情况,然后算哪一种情况合法,再统计答案. 上述思想的问题就在于我们从已知的结果出发,默认这种每一种情况中取出\(q\)个红球 ...
- 我的公众号 - Old Artist
如果可以,我希望大家关注我的公众号,没有技术,没有华丽的文笔,只有简简单单的语句. 分享一些小的事情,大家好,我是老艺术家. Thanks~
- 【LGR-059】洛谷7月月赛题解
传送门 比赛的时候正在大巴上,笔记本没网又没电(不过就算有我估计也不会打就是了) \(A\) 咕咕 const int N=(1<<10)+5; int a[N][N],n; void s ...