• 上午的国庆大阅兵有意思

Description

  https://loj.ac/problem/6433

Solution

  看数据范围认解法

  首先在每种情况出现概率相同的情况下, \(期望 \times 方案数 = 权值和\),即题意就是让你求所有排列的最大前缀和的总和……

  我们可以枚举哪些数是最大前缀,显然这些数内部任意交换顺序、其它数内部任意交换顺序 都不会改变这个最大前缀。

  一些数要排到前面去成为最大前缀,条件是该前缀除整段外的所有后缀和 \(\gt 0\)(因为最大前缀长度不能是 \(0\)),后面的所有前缀和 \(\le 0\)。

  (一个 \(\gt 0\),一个 \(\le 0\) 是因为对于一种排列,若有多个前缀和均为最大,我们只根据最短的前缀统计一次该排序。也可以根据最长的前缀,即一个 \(\ge 0\),一个 \(\lt 0\))

  设 \(f(i)\) 表示集合 \(i\) 的数有多少种排列满足所有后缀和 \(\gt 0\),\(g(i)\) 表示集合 \(i\) 的数有多少种排列满足所有前缀和 \(\le 0\)。

  \(f\) 的转移是每次往前加一个数,\(g\) 的转移是每次往后加一个数。加一个数只需要判断一下新后/前缀和是否满足条件。

  最后把 \(f\) 和 \(g\) 卷起来就好了。

#include<bits/stdc++.h>
#define ll long long
#define N 1048580
#define mod 998244353
using namespace std;
inline int read(){
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x; return 0-x;
}
int n,nn,f[N],g[N],ans; ll sum[N];
inline int lowbit(int x) {return x&-x;}
inline void upd(int &x, int y) {x = (x+y) % mod;}
int main(){
n=read(), nn=(1<<n)-1;
for(int i=0; i<n; ++i) sum[1<<i]=read();
for(int i=1; i<=nn; ++i){
int x=lowbit(i);
if(i^x) sum[i]=sum[i^x]+sum[x];
}
for(int i=0; i<n; ++i) f[1<<i]=1;
for(int i=1; i<=nn; ++i) if(sum[i]>0)
for(int j=0; j<n; ++j) if((i&(1<<j))==0)
upd(f[i^(1<<j)], f[i]);
//for(int i=0; i<=nn; ++i) cout<<f[i]<<' '; cout<<endl;
g[0]=1;
for(int i=0; i<=nn; ++i)
for(int j=0; j<n; ++j) if((i&(1<<j))==0 && sum[i^(1<<j)]<=0)
upd(g[i^(1<<j)], g[i]);
//for(int i=0; i<=nn; ++i) cout<<g[i]<<' '; cout<<endl;
for(int i=1; i<=nn; ++i)
upd(ans, (ll)f[i]*g[nn^i]%mod*((sum[i]%mod+mod)%mod)%mod);
cout<<ans<<endl;
return 0;
}

【PKUSC2018】最大前缀和的更多相关文章

  1. [PKUSC2018]最大前缀和

    [PKUSC2018]最大前缀和 题目大意: 有\(n(n\le20)\)个数\(A_i(|A_i|\le10^9)\).求这\(n\)个数在随机打乱后最大前缀和的期望值与\(n!\)的积在模\(99 ...

  2. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  3. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  4. LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】

    题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...

  5. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  6. BZOJ5369 [Pkusc2018]最大前缀和

    题意 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C是一个非常有自知之 ...

  7. bzoj 5369: [Pkusc2018]最大前缀和

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  8. [PKUSC2018]最大前缀和(DP)

    题意:求一个序列随机打乱后最大前缀和的期望. 考场上发现不管怎么设状态都写不出来,实际上只要稍微转换一下就好了. 一个前缀[1..k]是最大前缀,当且仅当前面的所有后缀[k-1,k],[k-2,k], ...

  9. P5369 [PKUSC2018]最大前缀和

    状态压缩 P5369 题意:求所有排列下的最大前缀和之和 一步转化: 求最大前缀和的前缀由数集S组成的方案数, 统计答案时直接乘上sum(S)即可 考虑最大前缀和的性质: 设最大前缀和为sum[i] ...

  10. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

随机推荐

  1. PTA --- L2-003 月饼

    这道题挺简单的,测试点2没过的话,注意题目中是两个正整数,而其余是正数 [没注意到,,,踩坑了,,,] 题目地址: https://pintia.cn/problem-sets/99480504638 ...

  2. 我们可以从英特尔® SPMD 程序编译器中学到什么?

    英特尔® SPMD 程序编译器俗称为“ISPC”,它流畅地展示了 CPU 多核 SIMD 语言.GPU 计算语言.数据并行 C++ 扩展和嵌入式应用或领域特定计算语言的重要未来发展方向.具体而言,本文 ...

  3. hdoj1520(入门树形dp)

    题目链接:https://vjudge.net/problem/HDU-1520 题意:和luogu那道没有上司的舞会一样的题,给定一棵带点权的树,父结点和子结点不能同时选,问怎么选使得权值和最大,求 ...

  4. Design Circular Queue

    Design your implementation of the circular queue. The circular queue is a linear data structure in w ...

  5. 什么时候该使用SUM()函数

    SUM函数用于返回表达式中所有值的和.通常情况下,对某些数据进行汇总时会用到该函数. 语法:SELECT SUM(column_name) FROM table_name

  6. Oracle同时插入多条数据

    INSERT ALL INTO 表名(NAME) VALUES ('tony') INTO 表名(NAME) VALUES ('tony2') INTO 表名(NAME) VALUES ('tony3 ...

  7. 从入门到自闭之Python--虚拟环境如何安装

    Windows下创建虚拟环境virtualenv ​ 如果在一台电脑上, 想开发多个不同的项目, 需要用到同一个包的不同版本, 如果使用上面的命令, 在同一个目录下安装或者更新, 新版本会覆盖以前的版 ...

  8. Android MediaPlayer 在 STREAM_ALARM 中播放媒体

    最近因为公司需求,要实现后台播放音频,同时广告机中的视频因为客户需求调至静音,不能通过修改系统的媒体音量来让音频发声. private MediaPlayer mediaPlayer; private ...

  9. And Reachability CodeForces - 1169E (有向图可达性)

    大意: 给定序列$a$, 对所有的a[i]&a[j]>0, 从$i$向$j$连一条有向边, 给出$m$个询问$(x,y)$, 求是否能从$x$到达$y$. 裸的有向图可达性, 有向图可达 ...

  10. JDBC 24homework

    编写程序: 1. 创建商品信息表Goods(包含编号Code.名称Name.数量Number.单价Price) 2. 设计程序流程,由用户选择:插入.删除.修改.查询 程序效果如下: (1)根据提示输 ...